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Wave-Drift Added Mass of Bodies with Slow Drift Motions

Weiguang BAO and Takeshi KINOSHITA

Institute of Industrial Science, University of Tokyo

4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505 Japan

Tel. & Fax: +81-3-5452-6169 E-Mail: kinoshit@iis.u-tokyo.ac.jp

1.INTRODUCTION

Ocean structures are usually constrained by mooring or tether systems, which supply relatively

weak restoring forces in the horizontal plane. Under the slowly varying drift forces exerted by

ocean waves, these structures may undergo low-frequency resonant oscillations in the horizontal

motion modes, i.e. surge, sway and yaw. The nonlinear wave loads are proportional to the square of

the wave amplitude in magnitude and occur at a frequency a-that is the difference between each pair

of frequencies, say CO and ok, in the components of ocean wave spectrum, i.e. a-=1 ca- q 01.
Conventional added mass and damping can be obtained by solving a linear radiation problem in

which the body of the structures is forced to oscillate in the calm water. In the case when the

frequency a of the oscillation is very small, the wave-radiating damping vanishes with an order of

0(o7) in the horizontal motion modes while the added mass tends to the same order of the displaced

water mass. However, with the presence of the incident waves, there exists another kind of added

mass and damping that is caused by the nonlinear interaction between waves and slow oscillations.

As part of the nonlinear wave loads, their magnitude is proportional to the square of the wave

amplitude, which is different from the conventional added mass and damping, and they are called

wave drift added mass and wave drift damping respectively. Recently, many studies have been

made to evaluate and measure the wave drift damping which is more significant compared with the

conventional wave-radiation damping and plays a key role in the simulation of slow drift motions,

especially in estimating the resonant response. On the other hand, wave drift added mass is

considered less important and relatively less attention has been paid to it. Nevertheless, it has been

reported that the added mass increases significantly when measured in waves E13. Therefore, to

simulate slow drift motions accurately and to determine the resonant frequency, it is worth

investigating the magnitude of the wave drift added mass and how much it would affect the slow

drift motions.
In the present work, the problem of interaction between slow horizontal oscillations of a body and

ambient waves is considered. The approach used by Newman [2] to investigate wave drift damping

is adopted. The feature of this method is that perturbation expansion based on two time scales is

used to simplify nonlinear boundary conditions. The wave forces acting on the body are evaluated

by integration of hydrodynamic pressure along the instantaneous wetted body surface. From the

quadratic nonlinear forces in terms of the wave amplitude, the wave drift added mass is picked out
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by the component in contract phase to the acceleration of the slow oscillations. These results will be

compared with the conventional linear added mass to examine their significance.

2.PERTURBATION EXPANSION OF THE POTENTIAL
We are going to consider the problem of a body slowly oscillating in a train of regular waves with a
wave number ko and incident angle f8. The nonlinear interaction among slow oscillation modes is
not considered so that each mode can be studied separately. The body is restrained from the linear
responses to the incident waves. The frequency of the slow oscillations is assumed to be U, which is
much smaller than the incident wave frequency co. The oscillatory displacement and velocity are

assumed to be Rekhe-i I} and Re{o'• 1e-i°y} respectively, where the subscript j= 1, 2 and 6

denoting surge, sway and yaw respectively. Following the approach of Newman's [2], the total
velocity potential can be expressed by the following perturbation expansion up to the quadratic

order in wave amplitude A:

'P(x,t)= Re{le--" + 00) +...+j [10je-'" +0(+)e-i°'(+a)1 + 0(;)e-'((0)t + ()e- +..j (1)

The potentials on the right-hand side of eqn. (1) depends only on the space position x. The number
in the subscript indicates the order in wave amplitude while the letter j is related to the

corresponding slow motion modes. Superscripts are used if necessary to denote harmonic time
dependence in the respective frequencies. Here, potentials associated with double wave frequency
are omitted since they will not contribute to the wave-drift added mass and damping. Substituting
the above expansion into the boundary conditions satisfied by the total velocity potential and
resorting terms with the same order, the boundary value problem governing each order of potentials
can be obtained. Detail deduction is referred to Newman's work [2]

3.CALCULATION OF THE WAVE-DRIFT ADDED MASS
The wave forces are evaluated by the integration of the hydrodynamic pressure along the
instantaneous wetted body surface and expanded in the same way as the velocity potential, i.e.

F1 2(t) = Re{Fee- + + ... + .[Fo.-° + + F j)e-'('-)t + F(°)e-y +..j} (2)
ij i lu We 2y

Here, the subscript i=1, 2, and 6 denoting the force component in surge, sway and yaw direction
respectively. In eqn. (2) Fou is the linear force in i-th direction per unit motion of 4 and is related to
the linear added mass Ao0 i and wave-radiating damping Bou as follows:

Foi j= -2 Aoi• + aBo)i ap fo obids (3)

where So is the mean wetted body surface. In the limiting case that o tends to zero, the radiation
potential Ooj of the slow oscillation tends to satisfy a rigid wall condition on the free surface. It is

further normalized as 00j = -•opj where (pj is a real function. Hence, as a tends to zero, the linear

-2 -



wave- radiating damping Boy vanishes while the added mass tends to

Aý = p fr onds (4)

On the other hand, E() is a force component in quadratic order of wave amplitude, which can also

be separated into two parts that is in phase with the acceleration and the velocity of the slow

oscillAtion respectively, i.e.
F2 ior 2 o.+ B2i) (5)

The formula to evaluate the wave-drift added mass is given by
A2 " = Im{-Pý [-iao}.)+v(0 1 ,-0,(;)'Vl +v+o, 'V¢°) +-iVO 1 D,(H *)()ds

+~ ~ ~2 2_e_ io [c)(.)-VK)P +V~ r°((++•-*-iasVO2 "VOV 0 i -ogDj () (V6)*&d
+ [g ) ("rl 01l- ]j0 •1+i02Ij(

2• i Jý + 2w ( 1(+ + *ýJ 2 
6

where C. is the mean water line of the body and Di is a derivative operator which is defined as

D, = a/x, D2 = l/Jy and D6 = xa/ay -y a/ax = /ao. The asterisk * in the superscript denotes

the complex conjugate. The letter z in the subscript means the derivative with respect to it.

When u'tends to zero, we define 0,')- () = P. and (+)-1(7) = oQj where P. is related to the

linear wave potential 01 as Pj = -iDj(O1)--j with ', =k 0 cosfi, ic, = k0 sin/ and 7c6= iJ/Ola.

Then, in this limiting case the wave drift added mass Azi can be evaluated simply by an integral

along the mean water line of the body:

A2o. = Im{-L f[ 1 +iV, (poob 1  Ti(p Vq 0 Voinidl with v = cog (7)

4.EXAMPLES AND DISCUSSION

A circular cylinder with radius a is taken as an example to calculate the wave drift added mass when

the incident wave angle is 0'. Shown in Fig. 1 are results of the wave-drift added mass A211

normalized by pfa4"2 where " is the wave amplitude. It can be observed that the wave-drift added

mass generally is the same order as the wave drift damping in magnitude. In order to compare with

the linear added mass, the possible maximum wave amplitude before breaking, i.e. =O--. 147dk0 , is

used to renormalize the wave-drift added mass and the ratio of the wave-drift added mass A211 to the

linear added mass A01I is plotted in Fig. 2. It can be seen that the contribution from the wave-drift

added mass is not negligible if the wave amplitude is comparable to the dimension of the body.
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An Enhanced Nonlinear Strip Method for Seakeeping Analysis

Volker BERTRAM, HSVA, Hamburg/Germany, bertram@hsva.de
Ricardo PEREIRA, MTG, Hamburg/Germany, pereira@mtg-marinetechnik.de

Maurizio LANDRINI, INSEAN, Rome/Italy, maulan @waves. insean. it

Available methods for calculating motions, shear forces and bending moments of a ship in
waves are usually based on linear (small wave amplitude) theory. However, for dimensioning
ship structures the loads in extreme waves are needed. Also for ship safety in sea waves, we
need to consider extreme motions, particularly extreme roll motions up to capsize angles.

The computational effort for a three-dimensional field method or even boundary element method
simulating the motions and loads on a ship at each time instant over a long time appears still
beyond our current and near future computational capabilities. Thus we try to introduce
simplifications that reduce the computational effort drastically without losing too much of the
physical significance of the model. The tool of choice appears then to be a nonlinear strip
method of some sort. The nonlinear strip method SIMBEL dates back to S6ding (1982) and
has been extended over the past two decades to include internal forces, propulsion system
dynamics and manoeuvring, e.g. Pereira (1988). A long-term goal is to have a tool which can
simulate also broaching and capsizing of vessels, i.e. a combination of extreme manoeuvring
and seakeeping motions.

The method is a simulation in which large-amplitude rigid-body motions of the ship in 6 degrees
of freedom, shear forces and bending moments are determined under the influence of forces and
moments due to weight, Froude-Krylov pressure, radiation and diffraction pressure, speed effects
(resistance and manoeuvring forces and moments due to oblique forward motion) and propeller
and rudder actions. For large amplitude motions, the diffraction and radiation forces cannot be
determined independently. But in principle we still couple forces F and (derivatives of) motions
u using basic differential equations.

The forces can be determined by integrating the pressure over the instantaneously wetted surface
of the ship. Unfortunately, the pressure distribution does not depend only on instantaneous
position, velocity and acceleration of the ship, but also on the history of the motion (memory
effects). This affects particularly heave and pitch motions. For linear computations in regular
waves, this memory effect results in the frequency dependence of added mass and damping. For
nonlinear simulations this is not quite as simple as many frequencies are present at the same
time and the superposition principle no longer applies. The memory effects can be expressed in
terms of convolution integrals, alternatively one considers 0 to n time derivatives of the force
F and 1 to n + 1 time derivatives of the motion u:

BoF(t) + B1 _ + B 2 FP + .... Aoit(t) + A1ii(t) + ...A2 _i (t) + ... (1)

The matrices Ai and Bi are determined in a preprocessing step for various drafts and inclination
angles for each section. This procedure is called state space model. It is far more efficient than
approaches using convolution integrals. Typical values for n (terms on left and right side) are
2 to 4. We chose 3. With increasing n problems appear with numerically induced oscillations
which grow and make the simulation instable.

Now stability and prediction accuracy of SIMBEL shall be improved by using some more ad-
vanced numerical methods to derive coefficients in the preprocessing stage. The added mass
and damping coefficients for the linear radiation problem are now derived for each section by
a three-dimensional Green-function method without forward speed. The forward speed effects
are kept as before in the framework of the strip method. The hope is that the three-dimensional

-5 -



method will improve accuracy nevertheless at the ship ends and may actually also improve the
stability of the nonlinear strip method procedures. As a first step a standard Green function
method following Landrini (1996) was used to define the hydrodynamic coefficients. This was
validated for a Series-60 CB = 0.7 against experiments, Vugts (1971), and a standard close-fit
strip method. To the best of our knowledge, this is the first time that such a validation for
individually strips has been performed. Heave added mass for sections are improved especially
at the ship ends Fig.1, and also sway damping coefficients are well reproduced, Fig.2. However,
roll is naturally predicted badly by both potential flow approaches.

In addition RANSE computations shall compute the drift force coefficients on the hull for
various drafts and inclinations. These are again computed for the 3-d hull as a preprocessing
step. It is crucial to include the speed effect here in the RANSE computations as the separation
characteristics and thus drift force coefficients change drastically with speed and forward speed.

Currently we develop the interface between the 3-d preprocessors and the SIMBEL strip method
and have prepared already a grid for an actual ro-ro ship. By the time of the workshop, we
should have results of the standard strip method and the new "hybrid" approach to see how
the changes in the individual hydrodynamic coefficients influence the global simulation.

REFERENCES
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UNSTEADY FREE SURFACE WAVES BY DOMAIN DECOMPOSITION APPROACH

E. F. CAMPANA AND A. IAFRATI

INSEAN - Italian Ship Model Basin - Rome, Italy

1 Introduction boundary element solution are presented.

Several numerical techniques have been recently devel-
oped to deal with the complex free surface topology 2 Two fluid Navier-Stokes solver
induced by the wave breaking (e.g. Tulin & Landrini
2000, Sussman & Dommermuth 2000). However, al- The flow of air and water is approximated as that of

though these approaches are strictly needed in the free a single incompressible fluid whose density and viscos-

surface region, their use far from the interface is expen- ity change across the interface. In an Eulerian frame

sive and neither really necessary. For instance, when of reference, local fluid properties changes with time

studying the wave breaking induced by a submerged only due to the interface motion. If surface tension

body an accurate description of the flow field close to and turbulence effects are neglected, the dimensionless

the body is not needed while the computational effort unsteady Navier-Stokes equations in generalized coor-

can be focused about the free surface. For this rea- dinates are:

son, a domain decomposition approach is built which aUm
couple the Navier-Stokes solver, employed close to the 0

interface, with a potential solver able to describe the

flow in the body region. 1

In a previous work (lafrati et al. 2001), an un- at (J -i)+ (Umui) ... J- 1

steady Navier-Stokes solver coupled with a Level-Set m \&x 1 /
technique has been developed to study wave breaking __1 i2 1 0 mf aui

induced by bodies moving beneath the free surface. In -J 92 Re o0am, (Gmn ] (2)

this work this approach is used in the free surface re-
gion, where the unsteady Navier-Stokes equations are where ui is the i-th cartesian velocity component and

solved by using a finite difference approach, while a Sjj is the Kronecker delta. The quantity

Level-Set technique is used to follow the interface dy- U(

namics. Throughout the boundary of the computa- Um= j-1 u (3)

tional domain velocity is assigned. In the body region,

a boundary integral representation of the velocity po- is the volume flux normal to the 6.. iso-surface and J-1
tential is used with Neumann boundary conditions on is the inverse of the Jacobian. In equation (2)
the body contour and at inflow and outflow. Concern-
ing the boundary conditions on the matching surface, Ur
two approaches are developed. In the first one, say Fr = Re =

Dirichlet type (DT), both the pressure and the veloc-
ity fields obtained from the Navier-Stokes solver are are the Froude and Reynolds number, respectively. Ur,L,

used within the unsteady Bernoulli's equation to ob- are reference values for velocity and length while pw, ftw

tain the velocity potential on the matching surface. In are the values of density and dynamic viscosity in water

the second one, say Neumann type (NT), only the nor- and are used as reference values. The quantity

mal velocity obtained from the Navier-Stokes solver is
used as a boundary condition on the matching surface. Gmn = j-1 0

m 4
96n (4)

In both cases, the solution of the boundary integral axj axj

formulation provides the velocity field on the matching is the mesh skewness tensor.
to be used as boundary condition for the Navier-Stokes The numerical solution of the Navier-Stokes equa-
solver at the next time step. It is important to remark tions is achieved through a finite difference solver on a
that, although here applied only in 2D problems, the non staggered grid. Cartesian velocities and pressure
proposed approaches are easily applicable also to 3D are defined at the cell centers whereas volume fluxes are
flows. defined at the mid point of the cell faces and are com-

In the following a brief description of the Navier- puted by using a quadratic upwind scheme (QUICK)
Stokes solver and of the Level-Set technique is given to interpolate cartesian velocities.

while further details can be found in lafrati et al. (2001) The momentum equation is integrated in time with

and in lafrati et al. (2000). The domain decomposition a semi-implicit scheme: convective terms and the off-

approach is applied to the wave system generated by a diagonal part of the diffusive ones are computed ex-
bunip on the bottom of a channel and by a submerged plicitly with an Adam-Bashfort scheme while a Crank-
hydrofoil. Comparisons with the full Navier-Stokes so- Nicolson discretization is employed for the diagonal
lution and with results obtained by a fully non linear part of the diffusive terms. A fractional step approach
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is used: an auxiliary velocity field is obtained by ne- wave. The reason for this excessive damping has been
glecting the pressure term on the right hand side of the found to be in the need to use a time step smaller than
momentum equation (predictor step) and in a second the maximum At allowed by the Courant constraint
stage (corrector step) the velocity field is updated by (CFL = 1). Indeed, when integrating the motion of
adding a pressure correction contribution. The latter the interface with a time step much smaller than that
is obtained by enforcing continuity thus yielding to a allowed by the condition CFL = 1, a decay of the ac-
Poisson equation which is solved by using a multigrid curacy occurs (Sussman & Puckett 2000). On the basis
technique. When the velocity is assigned at the bound- of the above consideration, the re-initialization of the
ary of the computational domain, Neumann boundary distance function is carried out with a period equal
conditions are obtained for the Poisson equation. to the time step given by the respect of the condition

CFL = 1.

3 Free surface motion via Level-
Set technique 4 Domain decomposition

The whole fluid domain is subdivided in two regions:In order to reconstruct the distribution of fluid proper- a free surface region and a body region (Fig. 1). In

ties in the computational domain, the actual location t frmerfthe method dcbed re viou sec-

of the interface has to be captured. In the level-set tions iue In the lea nl ow s sed

technique fluid properties are assumed to be related to and a unda In tera preentat for th velocit
the signed normal distance from the interface d(x, t). and a boundary integral representation for the velocity

thesiged orml dstace romtheintrfae dx, ).potential ¢ is adopted. Two procedures, differing by

At t = 0 this function is initialized assuming d > 0 in tenway i ic te inoroneare exhng be

water, d < 0 in air and d = 0 at the interface (Sussman the way in which the information are exchanged be-

et al. 1994). The generic fluid property f is assumed this, depending on the type of coupling, an overlapping

to be f(d) = fw if d > 6, f(d) =f if d < -• and (matching region) of the two domains can exist.

f(d) = (f. + fa)12 + (f. - fa)/2 sin(7rd/(23)) To illustrate the matching procedures, the wavy
flow induced by a bump on the bottom of a channel

otherwise. In the above expression J is the half width is considered. The bump, whose shape is described by
of a transition region introduced to smooth the jump the formula
in the fluid properties and it is chosen so that the jump
covers at least four cells. During the evolution the dis- y(x) = -1 + 0.1(1 - 8x 2 + 16x 4 ) x E (-0.5,0.5),

tance is transported by the flow, thus the equation suddenly starts with a constant velocity, U. = (-1, 0),
ad from the right to the left. In the results presented be-
it- + u. Vd = 0 (5) low it is assumed Fr = 0.707 and Re = 10000.

The wavy flow is studied in a frame of reference
is integrated to update the distribution of the distance attached to the body (Fig. 1). The computational
function. The interface being a material surface, its domain extends in the horizontal direction from x =
location is captured by reconstructing the level d = 0. -14 to x = 14 with the numerical beach model (6)
In order to damp disturbances outgoing from the com- used in x E (-14, -8) and in x E (8, 14). In the vertical
putational domain, a numerical beach model is intro- direction the domain extends from the bottom at y =
duced in the equation for the distance. Two beach -1 up to y = 0.4. The extension of the matching region
regions are introduced close to the two boundaries of depends on the type of approach used to couple the two
the computational domain. If y = 0 is the still wa- solutions.
ter level, in the beach regions equation (5) takes the r _

following form: Free surface region

- = Vd -v(d + y) (6)

at ~Matching region

where v is zero at the inner limits of the beaches and
grows quadratically toward the boundaries of the com- Body region
putational domain. Results presented below are ob- L ---- - ............... J

tained by using v = 2 at the end of the domain.
To keep constant in time the width of the transition

region the distribution of the distance function is peri- With regard to the solution of the body region,
odically reinitialized by computing, at each cell center, Neumann boundary condition is applied on the body
the minimum distance from the interface. This point contour and at the inflow and outflow boundaries. Re-
is found to be very important when using the level-set gardless of the type of coupling adopted, the solution
technique in conjunction with the domain decomposi- of the body region provides the velocity field to be used
tion approach. First attempts (lafrati et al. 2000) ex- as boundary condition on the bottom boundary of the
hibited an excessive damping of the produced following free surface domain.
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4.1 Dirichlet type the required time step is smaller than the maximum
time step allowed by the stability limit CFL = 1. Re-

In this case the bottom boundary of the free surfacesits presented below are carried out at At = 1/600
region coincides with the upper boundary of the body while the stability limit would require, for the grid
region and panels coincide with the bottom face of the adopted, At = 1/50. Depencence of the solution on
cells of the Navier-Stokes domain,.h iesepi nlsd

The Navier-Stokes solver provides the pressure and In Fig. 2, the free surface profile at t = 150, od-

velocity distributions along the matching surface. Those te by the fren dominecompositionap-

are used within the unsteady Bernoulli's equation to proaches and by th e NS, are shown. In Fig. 3, the ye-

update the distribution of velocity potential used as a locity components exchanged at the interface are com-

Dirichlet boundary condition for the boundary element

solution. The solution of the boundary integral prob- pared with the corresponding values obtained by NS.

lem provides the distribution of the velocity component 0.15
normal to the matching surface, while the tangential WT

0.1 NT----
component can be directly computed by the tangential NS - --
derivative of the velocity potential along the matching 0.05
surface. 0

-0.05

4.2 Neumann type -0.1

For this type of coupling, an overlapping of the two -0.15
domains is needed. In this case the panel distribution -15 -10 -5 0 5 10 15
on the upper boundary of the body domain coincides
with the bottom faces of the cell row j = jo of the Figure 2: Comparison between the DT and

Navier-Stokes domain. NT domain decomposition and the solution

The solution of the Navier-Stokes equation provides obtained by the Navier-Stokes solver through-

the velocity distribution on the upper boundary of the out the fluid domain (NS).

body domain. This is used as a Neumann boundary A very good agreement aniong the three solutions is ob-
condition for the boundary element solution. The lat- servable although the DT appears to perforii slightly
ter gives back the distribution of the velocity potential better.
all along the boundary, allowing the evaluation of the
velocity field at any point inside the domain and in 1.15 DT-
particular on the bottom boundary of the free surface 1.1 _NT ----
region, where they are used as boundary condition for NS -. -. -

the Navier-Stokes solver at the next step. 1.05
1

5 Numerical results 0.95
0.9

To validate the domnain decomposition and to coin- 0.85
pare the effectiveness of the two approaches, compar- -15 -10 -5 0 5 10 15
isons with the solution obtained by using the Navier-
Stokes solver on the whole fluid domain (NS) are es- 0.1
tablished. In applying the domain decomposition ap- 0.08 NDTNT ----
proach, the grid resolution employed in the free surface 0.06 -NS ....

region is essentially the same of that used for the NS. 0.040.02
Furthermore, to have a fair comparison, when using 0
the Navier-Stokes solver in the whole fluid domain, a -0.02
free-slip boundary condition is applied on the bottom -0.04

of the channel. -0.06-0.08

In both the domain decomposition approaches the -0.1 ,
bottom boundary of the free surface region is located -15 -10 -5 0 5 10 15

at y = -0.35. In the NT, the upper boundary of the Figure 3: Comparison of the u-velocity com-
body region is fifteen cells above (jo = 15, that is y = ponent (top) and v-velocity component (bot-
-0.20). A study of the dependence of the solution on ponen(pand vtveomty com nen rbt
the overlapping extension is performed. tom) exchanged at the matching boundary.

A key issue of the unsteady domain decomposition In Fig. 4, results obtained by using two different time
is the control of the evolution of the boundary condi- steps are shown. The DT approach appears to be less
tion at the matching surface. To avoid that boundary sensitive to the time step. In Fig. 5, the effect of the
conditions change too much from one step to another, width of the overlapping region in the NT approach is
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shown. No substantial differences occur, provided the Although numerical solutions have not yet reached a
overlapping region is larger than ten cells (for At steady state, a good agreement is displayed by the do-
1/600). main decomposition approach.

0.15 0.1
1/600 0.08 '

0.1 1/300 0.06

0.05 0.02 E

0 -0.02

-0.05 -0.04 0

-0.06 00 __

-0.1 -0.08 o W DT
-0.1 Dunca (1983)

-0.15 -0.12 n(1983) o
-15 -10 -5 0 5 10 15 -4 -2 0 2 4 6 8 10 12

0.15 1/600 Figure 6: Flow about a submerged hydrofoil:

0.1 1/300 .---- comparison with the fully non linear bound-

0.05 -ary element solution and the experimental re-

0 sults by Duncan(18)
-0.0
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The bow wave of a vertical surface-piercing circular cylinder in a steady current

John CHAPLIN

Department of Civil & Environmental Engineering, Southampton University, UK

1. INTRODUCTION

The bow wave of a vertical surface-piercing cylinder in a steady current breaks at modest Froude numbers. A
view of this flow is shown in figure 1, taken from experiments in which a 210mm diameter stainless steel
cylinder was towed at constant speed through water initially at rest (Chaplin & Teigen, 2000). The bow
wave is much like that of a blunt-bowed ship, where the resulting loss of momentum may represent a
significant proportion of the wave resistance.

Figure 1 Flow upstream of a cylinder towed at Froude number Fr = Vl/1 =1.64,

where V is the velocity and d the diameter, and Reynolds number Re = Vd/v = 4.6 x 105

In the experiments, the wave resistance of the vertical cylinder was estimated from pressure measurements
made at many points over its surface, and is plotted in figure 2 in the form of the equivalent loaded length
AL. This is defined by

(wave resistance) = AL x (drag per unit length far beneath the surface). (1)

The wave resistance increases rapidly once the Froude number has exceeded 0.5, and reaches a maximum at
a Froude number of about 1. At the peak it is equivalent to the loading, at deeply submerged elevations, on a
length of cylinder of about 0.8d.

In working towards an understanding of these results, this paper is concerned with the problem of predicting
the Froude number at which the bow wave of a vertical cylinder will first break. It is assumed that until this
happens the flow upstream of the cylinder is represented reasonably well by potential flow analysis, even
though in practice the downstream region will be dominated by the cylinder's wake.
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Figure 2. Wave resistance on a vertical surface-piercing cylinder expressed as the
equivalent loaded length AL. Re/Fr = 2.80 x 105.

In a reference frame (r, 0, z) fixed on the cylinder, the flow is steady. The origin is on the cylinder's axis at
still water level; z is measured vertically upwards, and 0 = 0 is the direction of the incident flow. Velocities
are normalised with respect to the incident velocity V, and lengths with respect to the cylinder's radius d/2.
The free surface boundary conditions are

T1=Fr2 (l-v2-v@-v2v) and Vz=Vr +Vr aO (2),(3)

After describing an approximate model for the flow, a fully non-linear numerical solution is outlined, using
the method of desingularised sources (Cao et aL, 1991). In the approach followed here, the boundary
condition on the cylinder's surface is imposed by computing the three-dimensional image system associated
with each source.

2. APPROXIMATE SOLUTION

As a first approximation, flow in any horizontal plane is assumed to be that corresponding to two-
dimensional potential flow past a cylinder:

v, = cos0 [1-221, v0 =-sin0[l+l] (4),(5)
r r

and v,2 is neglected in (2). The vertical velocity follows from (3), and the vertical acceleration of a particle

is

_v • 1v I vz 8Fr4

dvz = +V - r [--4+9r 2 -4r4 +(-3 +8r2 -9r 4 ) cos20+3r6 cos40] (6)

dt ra rae r 10

As the Froude number is increased, the expression on the right hand side of (6) first reaches a value of -1
(corresponding to a particle with a downwards acceleration of g) at a point on the surface of the cylinder r =
1, at 35.3' around from the stagnation point. This represent the conditions in which the water surface would
first break, and occurs at a Froude number of 0.465.
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3. FULLY NON-LINEAR SOLUTION

The fully non-linear solution for the steady bow wave flow uses a desingularised Eulerian approach, in
which the velocity potential is represented partly by the sum of a large number of point sources distributed
over the free surface. The sources are placed around the cylinder at regular radial and azimuthal intervals.
As the solution develops, each source is moved vertically, maintaining a constant vertical offset from the free
surface. A collocation point is placed on the free surface directly below each source.

At this point it would normally be necessary to introduce additional sources inside the cylinder to maintain
its surface as a boundary. In two dimensions this problem can be solved explicitly by means of the circle
theorem, but in three dimensions it is likely to involve the inclusion of a large number of extra sources and

their corresponding collocation points. However, the aim of this work was to experiment with the idea of
generating for each external source a three-dimensional image system which automatically preserves the
boundary condition on the cylinder's surface.

The velocity potential of the three-dimensional image system associated with a single point source outside
the cylinder can be constructed by using the method set out by Affes & Conlisk (1993) for the case of a
cylinder in the neighbourhood of a vortex filament in free space. If 0s is the potential due to the source, then

the potential of the image system is

_ ei ajs- K, (klKkr) e ikdz (7)r=1

where Km is the modified Bessel function of order m, and 4s is the double Fourier transform of the source

potential,

$s = f f 0s exp(-ikz--imO) dO dz. (8)
-00 -7C

The transform in the z direction can be performed analytically to give

+ = -imf 2k(Rcose-1) K (kR 2 -2RcosO+l )de (9)
r=1 r -e R2 -2RcosO+ 1

for a source of unit strength located at (R, 0, 0). The total velocity potential consists of the sum of the
potentials due to the sources directly (making use of the symmetry of the flow about 0=0), the image

systems of these sources, and the two-dimensional flow of which the velocity components are (4) and (5).

The solution proceeds iteratively, starting with a trial surface profile il(r, 0) obtained from (2), (4), (5), with

v, = 0. The source strengths are then obtained from the linear system (3), and each iteration is completed by

updating the surface elevations from (2). Placing each source and collocation point on a fixed vertical line
allows much of the computation involved in (7) to be carried out just once for a given mesh layout, and
several of the subsequent operations can be done by using FFT routines.
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Some results are shown in figure 3. At Fr = 0.36 and r = 1.2, only the vertical velocity differs markedly
from the simple model. Since the computed vertical velocity is significantly reduced, it suggests that the
critical Froude number will be rather greater than the figure of 0.465 mentioned above.

As described here the computational method for dealing with the boundary condition on the cylinder is not
very efficient, since it requires more computer storage and time than the alternative of placing sources inside
the cylinder. However, it does have some attractions, and there is scope for significant improvements.

0.2 I 0 I 1

-0.5 0.5 / ,
S/ a

0 ,/ V, -1 vz 0 a a

-0.2 -1.5 -0.5

( 1 -2 (b -1 (c)

0 90 180 0 90 180 0 90 180

0 0 0

Figure 3. Approximate (broken line) and computed (continuous line) results at Fr = 0.36, and
r = 1.2: (a) the water surface elevation; (b) the azimuthal velocity; (c) the vertical velocity.
The upstream stagnation point is at 0 = 1800.
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The steady free-surface potential flow generated by a source advancing at constant horizontal speed is
considered by making use of the formulations developed by Chen & Nguyen (2000) in water of finite depth.
Fiurther to that work on the singular and highly-oscillatory properties of the steady free-surface potential
near the track of the source located close to or at the free surface, another peculiar property is analyzed
here. It is shown that the classical formulation suffers a non-uniformity when the waterdepth tends to
infinity. A uniform formulation is then found by extracting the constant terms - one of them being infinity!
Furthermore, the wave component of steady flow in subcritical and supercritical regimes is presented.

1. Green function of steady flow in water of finite depth
Under the reference system moving with the source at the speed U along the positive x-axis defined by its
(x, y) plane coinciding with the mean free surface and z-axis oriented positively upward, the ship-motion
Green functions G(, Y,) representing the velocity potential of the flow created at a point = (ý,y, () by a
steadily-advancing source of unit strength located at a point is = (x,, y,, z,), can be expressed as

G = Gs + GF (1)

where GF accounts for free-surface effects and Gs is defined in terms of simple singularities

47mG 5 
= -1)n {-i/ r2 + ((-z 8, + 2rth)2 + 1/ lr2 + ((+z,, + 2nh)2} (2)

n=--C

in which r A(_-x8 )2 + (7_y,) 2 and h = H/L is the adimensional waterdepth with respect to the reference
length L. The simple part Gs defined by (2) satisfies GS = 0 at the free surface (( = 0) and OGS/L( = 0
at the sea bed (( = -h). The free-surface part GF in (1) is defined by a double integral representing the
Fourier superposition of elementary waves

47r Gy = lim fd, f da (3)ia+/Y
4G +of_ J-0 f iCC -D + (3)

with (x, y) = (+-x., 77-y,) and A defined by

A-cosh k((+h) cosh k(z,+h)/cosh2 kh with k = •fa+± 2  (4)

Furthermore, the dispersion function D in (3) is given by

D = F 2 a - ktanhkh (5)

in which F = U//gL is Froude number with g the acceleration of gravity. The function E, in (3) is given
by E, = - sign(a) and is significant in the region D(a, f3) ; 0.

If we use the polar Fourier variables (k, 0), the equation (3) becomes
4 r2 GF = lim 'r fd Ae-ik(xcosO±ysinO)

6-++ofJ_ Jo D/k - iesign(cos 0)

in which A is given by (4), and by using (5) Dnk becomes :

D/k = k[F 2 cos 2 0 - tanh(kh)/k] (7)

Due to the symmetry properties of the dispersion function D(k, 0), it can be easily verified that the free-
surface part of the Green function GF given by (6) is symmetrical with respect to the axis y=0 and that its
imaginary part is nil. The connection to the conventional form (eq.13.37 in Wehausen & Laitone, 1960) can

be obtained by using the residue theorem and exploiting the symmetrical properties of the Fourier integral.
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2. Non-uniformity of the Green function GF
The free-surface component G' is defined by the double Fourier integral (6) in which the amplitude function
A and the dispersion function D are dependent on the waterdepth h as a parameter. It can be easily verified
that the limit of the amplitude function A(k, h) given by (4)

lim lim A(k, h) lim {imoA(k,h) 1= (8)
k--0 h-oo h--ooIk-0 I

However, as far as the dispersion function D(k, h) is concerned, we have from (7)

lim I lim D(k, h) k(F 2 k cos 2 9-1) =O(k) (9a)
k--0 hl -oc J

and

lim lim D (k,h)} = k2 (F 2 cos2 9 - h) = O(-k 2h) (9b)
h-oo k-0

by using the development tanh(t) = t + 0(t3 ) as t = kh -4 0 in (7).

If the limit (9a) is used, we usually say that G' given by (6) tends to the Green function in deep water.
However, as the Fourier variable k is involved in the integral representation of GF (6) and if the limit (9b)
should be used, different values of GF may be obtained since

0 p > 1/2

limr lim DV(k, h) 1 p-=1/2 (10)
h--oc k=h-P--.0 00

This non-uniform behavior of the dispersion function implies that the classical expression of the Green

function G' given by (6) may not be uniform in the limit of deep water, and that some undesirable terms
such as constants may be embedded in (6). To identify them, we perform a local analysis of the Green

function G' corresponding to the Fourier integral in the region k < 6 << 1. We write

4w2 GF = J jo Ao eik(xcosO+ysinO) (11)

J-- J Dok

in which Ao = [A(k, h) + (ek--)] - k-o = e-ka[1 + 0(2)] (12a)

with a a positive real parameter and

Do/k = D(k, h)/klk-o = k(F 2 cos2 0 - h) + 0(63) (12b)

The parameter a is introduced to facilitate the analysis as we will extend 3 --> 0c0, and for the sake of

numerical evaluation of the resultant integral. The value of a is hoped to not affect on the results of the
analysis. It will be shown that the undesirable terms are indeed independent of a.

Introducing above expressions into (11), GF may be estimated as

4 F 2 5 = dO ek[ai(x cos O+ sin )1

= F2  d _ lim Fh jim E + i(cos 0 + ysin0)]} (13)Tr 2 cos2 0 -- h n--O

where Elf{-} is the exponential integral function defined in Abramowitz & Stegun (1967). At r . 0, the
exponential integral function can be written

El{ [a + i(x cos 0 + y sin 0)]}=- log r - - - logfa + iR cos(0 - 0)] + O(K) (14)

where -y 0.57721 ... is Euler's constant, and (R, p) defined as

R= x2 -+y 2 and ¢=arctan(y/x)

Using (14) in (13), we have

47r2G = C,, + Co + 47r2GoF (15)
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with C = limn 27log for F/V <l C. = 0 for F/v/h> I (16a)
-0 hh!1 - F 2 /h

Co- 27r- for F/v'h<I ; CQ=0 for F/V7 >I (16b)
hV1 - F2/h

4r 2 G{F = log[c + iRcos(O - 0)] dO (16c)fr F 2 
cos 2 0 - h

Both C, and Co are considered as constant since they are independent of the variables (ý.,rT, () and

(Xs, ys', z). They are zero in the supercritical regime (F/vh > 1 ) but not in the subcritical regime (F/1vh < 1).

Similar to the dispersion function analyzed in (10), the constant CO, at F/vh < 1 given by (16a) is non-

uniform and is equal to infinity if h is finite. The constant Co (16b) is finite and disappear in deep water

while the term 6F is represented by a single integral (16c).

3. Uniform formulation of the Green function
Further to the foregoing analysis, we may now define a uniform formulation of the Green function by simply

subtracting the constant terms Coo and Co from the free-surface component GF :

G = Gs +GF with OF = GF - (C.+Co)/(47r2 ) = (jF +6F (17)

with the new free-surface component OF defined by

6F = GF _ Go = lim dOl dkAe-ik(°cosO+ysinO) (18), -+o 0J-r foý

with A exp(-kt-)

A D/k -icsign(cosO) - k(F 2 cos2 0 - h) (19)

It can be shown that A = 0(1) at k -- 0 and has uniform limit for h -4 0c.

4. Wave component of the Green function

Following the analysis by Noblesse & Chen (1995), the free-surface part OF can be decomposed as the sum
of a wave component and a nonoscillatory component significant only in the near field. The wave component
is defined by the single Fourier integral along the dispersion curves defined by the dispersion relation D = 0

47ri Gw= E jDdS (El + E 2 )e-i(0'x+'Y)A/[jVD[j (20)
D=0 =

where ZD=O means summation over all the dispersion curves and ds is a differential element of arc length

of the dispersion curve. The function E, = - sign(a) as already noted and the function E 2 is given by

E2 erf(xD0 + yD•) (21)

where (D,, DO) = (OD/ao, aD/l3) and 11VD[1 = 2 +nD. The function erf{.} in (21) is the usual error

function defined in Abromowitz & Stegun (1967).

From (5), D = 0 defines two distinct curves in the left-half (a < 0) and right-half (a > 0) planes

symmetrical with respect to a = 0. Both dispersion curves are symmetrical with respect to 13 = 0 as well.
The dispersion curves k = k(O) for 0 < 0 < 7r/2 are depicted on Figure 1. The curves from right to left are
associated with the value of F/vh = (0, 0.8,0.9,0.95, 1,1.05,1.1,1.2,2, 3, 5), respectively. It can be verified

that the imaginary part of GW given by (20) is nil due to the symmetrical properties of the dispersion curves,
and the wave component GW is depicted on Figures 2 and 3 for F/V-h = 0.95 (subcritical regime) and 2.0

(supercritical regime), respectively.
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Figure 1: Dispersion curves depending on the values of F/viz-

2.0 /.
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Figure 2: Wave component of the Green function at Fl =h 0.95 (-10•<X•<2, -3 <Y <3)

Figure 3: Wave component of the Green function at F/Vhi 2 (-10 < X < 2 -3< Y < 3)
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Abstract: The problem of ship entry into a very narrow lock is studied with attention to the interaction between
the ship's motion and its waves. A one-dimensional unsteady hydraulic narrow-channel model for the flow
coupled to the ship's motion in surge, heave and pitch is proposed and numerically implemented. The calculated
ship motion is validated by comparison with model experiments carried out in the VBD shallow water tank by
Z6llner and Brol3 (1993). As the ship begins to enter the lock it pushes a mass of water ahead so that a bore is
generated. By way of reaction the ship experiences an impulse, decreasing its forward speed and increasing its
trim and sinkage enormously. The accurate prediction of such motion is extremely relevant in practice. A movie
animation is provided to illustrate this interesting phenomenon.

Introduction

The problem studied here concerns ship entry into a very narrow canal-lock. A typical example in Europe would
be an inland ship of length I = 110 m, beam b,, = 11.4 m and draft dm = 2.5 m moving at a speed of about 5
km/h into a rectangular canal-lock of length L = 200 m, breadth B = 12 m and water depth h = 3 m. We note in
passing that this flow problem is analogous to that of a leaky piston pushing into a cylinder filled with a
compressible fluid.

Before the ship reaches the lock it moves at a constant speed in a relatively wide lead-in canal. There it is
in equilibrium since the net effective propeller thrust equals to the total hull resistance. Because of the low ship
speed (Fh, < 0.3) the resistance is mainly frictional. As the ship-bow passes the lock-gate, it pushes a mass of
water into the lock. Due to a piston effect, the free surface in the lock is at first greatly elevated and the resulting
hump of water then slowly runs off through the narrow clearance between the ship and the lock. Owing to the
inertia of water, the receding tendency goes on to form a depression in the lock. This process repeats itself
becoming weaker and weaker in course of time. As a reaction the ship initially suffers a drastic deceleration,
followed by decaying cycles of acceleration and deceleration.

An experimental investigation of this problem on model scale was carried out by Z61lner & Brol3 (1993)
at the VBD in Duisburg. The motion recorded in the model experiments can be exploited to estimate the
dominant effect. The average deceleration in the first phase amounts to 0.0025 g. The corresponding braking
force is about 20 times larger than the steady frictional resistance according to the ITTC 1957 formula. This
highlights the overwhelming importance of inertial effects in this phase.

Mathematical Model

Two coordinate systems are used: an earth-bound system Oxyz and a system Oiý moving horizontally with the
ship. They are interrelated by

x=ic+4(t)-l/2, y=ý, z=i, t=i,

where I is the ship length and 4(t) is the distance covered in the lock (from the lock gate to the ship bow). The
sinkage of the ship's center of gravity G is denoted by s(t); the trim, by 0(t) (stern up positive). Therefore, its
dynamic local cross-sectional area Sd under the undisturbed water level z = 0 can be derived from its static value
So as follows:

Sd (i,t) = S0(i) + b(i)[s(t) + ( '0- XG)O(t)0.
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Here, only the strictly symmetric case is considered, i.e., a symmetric ship entering a symmetric lock along its
centerline. Moreover, the problem is simplified to be one-dimensional, i.e., the free surface is z = 4 (x, t), the
mean fluid velocity in x-direction is u(x, t), and the dynamic local canal cross-sectional area filled with water is

A(x, t) = A.(x) - Sd (i, t) + [B(x) - b(i)]g (x, t).

The flow is, therefore, modeled by the following mass-conservation and momentum equations:

aA + a(uA) 0 (1)
at ax

Du U u a u au +g =x-t+ca 1-- u-a 2 O-- u-T+U g-= (2)
aJt A x2  ax

and the pressure is given by

p = pg(•" - z). (3)

The empirical a1 -term in Eq. (2) describes a mean local friction on the canal side-walls and the ship-hull
surface; it has a dominant effect. The ct2-term represents a small viscous wave damping and may be neglected.
Since by virtue of symmetry only three degrees of freedom (surge, heave and pitch) are involved, the relevant
hydrodynamic forces and moment acting on the ship are generally expressed as

F = f-pn.dS, Fý = f-pnzdS, MG =-fp['n, -(c-iG)nZ]dS
S,,.S". S..

and specially evaluated as

F. = pg [So((i)+b(i)(s+O( 0 -'cG))]+ - f
-1/2ý i2d

1/2

F, = pg J+s+6i-iG)]b~i)di
_12

1/2

MýG =-pg f[€ + S + ( G)]b(.ý)( 'G) d.
-1/2

The corresponding equations of motion are

dU dW d 20M
mA - =F +Fd, m-- = Fz, ,JS d = MG, (4)

dt dt dt(

where

U=d /dt, W=-ds/dt,

and Fd is the excess of net effective propeller thrust over the hull frictional resistance. The thrust is assumed to
remain constant throughout at its original equilibrium value before the ship reaches the gate. The frictional
resistance is updated continuously using the ITTC 1957 formula with an empirical velocity-increase correction
similar to Emerson's (1959).
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Introducing static water-plane integrals

1/2 1/2 1/2

Aw:= b(•i)di , Mw: J(i- iG )b(i)di , I"= J(i(,-)2b(•i)di
-1/2 -1/2 -1/2

and dynamic auxiliary integrals

1/2 1/2

Isink (t) = _ifT(x, t) b(.i)d, trim (t)= f( - )4 (x, tb(i)di,
-1/2 -1/2

the last two equations in Eq. (4) can be rendered in a compact form:

(-dS+ dS)+pg(Aws+MwO+I0 5 nk)=O (5)
dt2  s dt

d 20 dO
J(jt +a, -) +pg(IO + M ,s +I,rjn) 0 (6)

didt

with J = Ji-- for simplicity, and a, and a, as empirical damping coefficients for sinkage and trim,

respectively.

Numerical Solution and Results

The coupled equations of motion of the fluid and the ship are solved simultaneously by an implicit finite
difference method. Gourlay (1999) has given an analytic solution for the steady problem of a ship moving in an
infinitely long narrow channel. We check our computer program by comparison with the analytic solution.

"-10 -5 5 10 h

-0.05

-0.1

-0.15

-0.2

-0.25

Fig. 1 Numerical and analytical results are represented by the dots and the line, respectively.

Fig. 1 shows a comparison of our numerical results with Gourlay's analytical solution for the velocity
distribution along the ship's longitudinal axis for a Wigley hull of length 100 m, beam 11.4 m and draft 3 m at
Fh = 0.3 in a channel 12 m broad and 4 m deep. For simplicity, this comparison has been done for a captive hull

(no sinkage or trim) and ignoring the empirical factors al and a2 . Evidently, the agreement is satisfactory.
The problem of an inland ship entering a lock was investigated experimentally on model scale by Z611ner

and BroB (1993) at VBD. One of their cases was chosen as the first example for our computations. The 1:16
ship model is VBD-M1343 and both horizontal and cross-sectional profiles of the lead-in canal are trapezoidal.
The principal dimensions of the ship and lock were already cited in the Introduction. The ship speed is held at
Fnh = 0.25 (about 5 km/h) as the ship approaches the lock. After the bow passes the lock gate the ship is free to
surge.
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Fig. 2 Numerical and experimental speed and sinkage are represented by the dots and the lines, respectively.

Fig. 2 shows that the numerical computation captures the real unsteady forward motion of the ship with
repeated deceleration and acceleration quite well. Even the two near-standstills are simulated with only a slight
phase shitt (Note that with a higher initial speed or still larger blockage even at'c•vard motion of the ship could
occur temporarily.) On the other hand, the computed sinkage is mostly smaller than the measured one. A
probable reason for this discrepancy is that our model does not take into account the propeller effect on the flow,
which is further enhanced by the narrow lock. Fig. 3 shows three typical ship wave profiles in the lock at
arbitrary instants.

Fig. 3 Calculated ship wave profiles in the lock at three arbitrary instants.
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ON A FAST METHOD FOR SIMULATIONS
OF STEEP WATER WAVES

Didier CLAMOND & John GRUE
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The dynamics of waves along the ocean surface plays an important role for safety of ma-
rine activity and operations. The waves determine the input parameters for dimensioning of
oil-platforms and ships. Further, the waves determine the loads in tension-legs and risers con-
nected to oil-platforms and floating production ships. The most common industrial analysis
tools for waves at the sea surface (irregular waves) employ perturbation models, capturing
nonlinear effects up to the second or the third order in wave steepness. Observations both
in large scale and in laboratories reveal that weakly nonlinear methods have shortcomings in
modelling moderately steep waves and the corresponding induced velocities and accelerations.

Prominent examples are waves leading to ringing of offshore structures and highly nonlinear
freak waves. Fully nonlinear methods which capture the weaknesses of weakly nonlinear meth-
ods have primarily been employed to study breaking waves. Here we focus an intermediate
amplitude range, where perturbation models have poor performance, but the amplitudes are
below those leading to breaking.

A common drawback of the existing fully nonlinear methods is that the computational
schemes are slow. This means that long time simulations of wave-fields with appreciable
size are unrealistic. While the integration of the prognostic equations can be made fast, the
bottleneck is the solution of the Laplace equation which is required at each time step. Thus,
a fully nonlinear model for water waves can only be fast provided that the Laplace equation
solver is fast. Here the aim is to derive a rapid method for fully nonlinear non-overturning
water waves. The formulation is two-dimensional, but the method may be extended also to

the three-dimensional case. Making use of potential theory we introduce velocity potential
and stream function (0, v/), and (x, y, t) as horizontal, upward vertical and time variables,
and let 77(x, t) be the surface elevation relative to the mean level y= 0. In two dimensions we
obtain k and 03 by the Cauchy integral formula, split into real and imaginary parts, giving

-7 1TO +D2X-X
11°4' 'Y - •-I , ,=¢)dx' (2)7r -oo" I+D 2  x/ -x'

where the 'tildes' denote the functions at y =q 7and ¢= ý(x, t), i = (x/', t), etc. In (1)-(2)
the function D= (7/' - Tl)/(x' - x) is introduced, where D decays according to [x' - xj-1 for

I - xI -+oc and D -+?, for x'-+x. The equation (2) is commonly used to determine ik, given
¢ and q. ý/ is then determined implicitly, and the equation is typically solved iteratively with

- 25 -



O(N2 ) operations. This is the intensive part of the computations. An alternative, however,
is to determine -? from equation (1).

When the surface is horizontal, the integral equations are convolution products and can
therefore be computed very quickly via Fast Fourier Transform. For a non-horizontal surface
it is then tempting to reformulate the equation obtaining the form of convolutions. Splitting
(1) into singular and regular integrals we obtain after one integration by parts

= x dxr+ - _X dxI-- -, dx'I f7 o oX -X 7r f-z'-. X 7r X

+ ± I arctan(D) - D ]D-r)r' + (3'
7r - W -ýnf-00 l+D 2  x1-x" ()

Applying the Hilbert transform (i.e. Ji {f} • f}-f. ! dx'), equation (3) becomes

_Il{lrf[arctan(D)D- dx+_ 0f D(D-x)'' dx'1-- X (4)

This is another equation for ¢. In (4), the singular integrals are convolutions and can thus
be computed quickly. The remaining regular integrals have kernels that decrease rapidly,
as Ix' - x1-3 and Ix' - xJ-2, respectively. Therefore, integrations over (-oc, +oo) can be
approximated by integrations over a limited interval (x - A, x + A). The parameter A is
choosen in accordance with the precision needed and depends on the wave characteristics and
not on the length of the computational domain. Moreover, the contribution on the right hand
side of (4) involving Z, is cubic in nonlinearity, while in equation (2) the corresponding term
is quadratic. For nonbreaking waves, iterations with (4) thus converge faster than iterations
with (2). The convergence is so fast that one iteration is enough for most of the practical
computations (see below).

An iterative scheme is initialized by the explicit quadratic approximation

-H L{~+ q +IL{H IIL{}7' (5)

Applying one analytical iteration, neglecting integrals being of quartic nonlinearity, we get
another approximation 1 - X1+,=,7. [+D D_-2 ¢ dx'-x (6)

The latter is explicit and does not involve transcendental functions. It is very accurate and
quickly computable. Integration over one wavelength of steady periodic waves, with almost
maximal slopes, cannot be distinguished from reference computations (fig. 1).

The formulation is also tested in unsteady simulations with the following method. The
linear parts of the temporal evolution equations are solved analytically, while the remainding
nonlinear parts are solved numerically with a variable step-size eight-order explicit Runge-
Kutta scheme. A spectral method is used to compute the spacial derivatives, without smooth-
ing or regridding. Evolution of a long wave packet, with initially small slope of the carrier
wave (ako = 0.12), is simulated. Very large waves - freak waves - are formed after some
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while (fig. 2). The omitted term in (4) is quartic in nonlinearity with a small coefficient, and
thus very small. This term may easily be included if needed. For most of the simulations it
may be neglected. Therefore, the method is fully nonlinear in practice.

The method is O(N log N) for practical computations, and thus very fast. Extensions
include the three dimensional case and a finite (varying) fluid depth (Clamond & Grue 2001).

This work was conducted under the Strategic University Programme 'General Analysis of
Realistic Ocean Waves' funded by the Research Council of Norway.
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Figure 1: Comparison of approximations for 27ra/A =- 0.41 (A wavelength)-
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Numerical Measurements of the Index of Wave Refraction through
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1 INTRODUCTION

The interaction of water waves with vertical cylinders has been investigated with special attention in
our community those last years. Theses studies were mainly motivated by projects of very large floating
structures, like airport, designed to be supported by a huge number of truncated vertical cylinders.
When the cylinders are bottom standing, the velocity potential may be found by the semi analytical
method of Linton and Evans (1989) [1]. This formulation was used to study some specific phenomenon
linked to wave propagation in such regular pile network such as trapped mode [3]. Recently [2] P.
McIver, applying the theory and results of solid-state physics to the propagation of water waves in
such infinite network of cylinders, showed that the phenomenon of stopping band and passing band
may occur also in this hydrodynamic context.

In the present study, the question was to determine if the equivalent of an index of refraction could
be defined for the propagation of the water waves through an ocean area occupied by evenly spaced
vertical piles when the number of cylinders increases while filling density is kept constant, like in fig.2.

y

b r
n

x

L

Figure 1: notations. left: cylinders filling a triangular area - right: refraction of a ray across a prism

To study this question, we have adopted an homogenization approach to the problem, as Evans &
Shipway in [4], but using the ray theory of geometrical optics to define an experimental setup for the
measurement of the index of refraction. We use the same classical experience as in the study of light
propagation through a prism. It is well known that, if the prism medium has an index of refraction of
says, n different from the index in the outer open ocean no, then the Snell-Descartes law states that:

no sini = nsin r (1)
nsinr' = no sin (1
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This law is usually expressed, in linear water wave refraction theory, using the wave celerity instead
of the refraction index, reading: (sin i)/Co = (sin r)/C.

A prismatic area (i.e: a triangle view from the top fig.1), filled with cylinders of equal diameters,
is exposed to an incident regular wave train described by the usual Airy potential. Two parameters
may be used to describe the medium inside the prism: the density d (or solidity factor in [4]) which
is the ratio of the total cross section area of the cylinders divided by the triangle surface, and the
homogeneity factor h which will be defined here as the number of cylinders per unit surface.

Let L be the length of the base of the triangle, I the distance between the extreme circles centers
on the base raw, a and b the horizontal and vertical distance between consecutive circles centers, r
the radius of the circles (see fig.1). Let p denotes the number of cylinders on the base raw (p = 4
in fig.1), then N the total number of cylinders equals N = E-'i-01(i + 1) = p(p + 1)/2. Choosing an
equilateral triangle leads to the expression of the density a = 47rNr 2 /V3-L2, and the homogeneity
factor h 4N/v/3L2 .

p=4  p= 9  
p=1 5

h =23 h=104 h=~277

Figure 2: increasing the homogeneity factor h while keeping the density constant: d = 0.5

2 NUMERICAL EXPERIMENTS

The numerical experiments consists in first solving the above problem for the potential amplitude by
the Linton-Evans method [1], and then by plotting and analyzing the downstream wave field in order
to identify, when possible, a transmitted ray refracted of a certain angle to be measured. From this
measured angle, the refraction index is derived through the Snell-Descartes law eq.(1).

The computation of the complex potential amplitude follows exactly the method described in [1].
The total potential is then given by

N co
S- ei#rcos(O-f) + E E Aý 1ZnHn(Krj)ei"° (2)

j=1 n=-oo

where we have kept the notations of the cited paper; HnI being the Hankel function of order n, and
Zn = Jn(Ka)/H.(Ka) , with Jn the Bessel function of the first kind and order n. The coefficients A3
of the expansion (2) of the scattering potential are the solutions of the system

N M

m+ AmnZnei(n-)' knn-.m(KRjk) --ei (3)

j=1 n=-M

k-1,...,N m=-M,...,M

The first thing we did was to find a range of the parameters (density, homogeneity, wavelength,..)
for which the phenomenon can be observed. It is not so evident, because due to other phenomena

- 30 -



like partial reflections, medium inhomogeneity, ... , at lot of rays emerge from the triangle, generating
confuse refraction figures. Here, for L = 1, d = 0.5,/3 = 0 and p = 15, a large range of wavelengths was
swept in order to find the best illustrative value. This occurs when the wavelength A is approximately
equal to the horizontal cylinders spacing a.

0 5 10

0 Am7Di fraction-field0

-31

-4- domi tfract 4
"direction

-5 10

Figure 3: amplitude of the diffraction field showing the refracted ray direction L = 1, d 0.5, p 15,
/3=0.

Measurements of the refraction angle are made directly on the plot of the wave field amplitude,
in the quadrant where the ray must logically emerge. For the sake of legibility the scattering field is
used for this analysis rather than the total wave field. An example of such a plot is given in fig.(3).

1.5

S1.45
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• 1.35

1.3 5 10 15 20
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Figure 4: convergence with homogenisation

For this case, the measured refraction index was n = 1.38. The convergence to this value with
increasing homogeneity is shown in figure (4) where the index is given as a function of the number p
of cylinders on the base raw.

The next step was to investigate wether or not the observed phenomenon could be actually at-
tributed to wave refraction. So, from the above case, we varied the incidence angle /3 and we checked
the behavior of the refraction angle with regard to Snell-Descartes law eq.(1).Results obtained when
varying the angle of incidence from -10 to 30 degrees are plotted in figure (5). The hydrodynamic re-
sults are in good agreement with the optical reference law; we can therefore conclude that the observed
deviation phenomenon is most probably of refraction nature, in the common sense.

Finally, a comparison of our results was made with the continuum model proposed by Evans and
Shipway at the last Workshop [4]. Their approach was based on an analogy of the equations of the
2D hydrodynamic problem with an acoustic model of the air flow in exchanger tube banks. Following
their approach, the ratio between the wave velocity outside and the velocity inside the region filled by
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cylinders, which is nothing but the refraction index as defined here, should be equal to n = V1 + d2. In
order to compare our results with this proposal, we have performed a series of numerical experiments
at zero incidence, with a fixed wavelength and a fixed homogeneity factor, and we varied the density in
the range [0, 0.5]. Results are plotted in figure (6). Differences up to 20 percents are observed between
these two approaches. It is difficult to conclude about these moderate discrepancies because on one
side, our approach suffer from experimental uncertainties and numerical limitations of the number of
cylinders, while the homogenisation technique used in the acoustical continuum model is based on
several important assumptions.

7S . measured wave refraction
c i Snell's law r- 1.5

60A A

,U- 40 >--- - j .
__ 0

202 I " .1 " Evans-Shipway continuum model
1 0 0 0 ,A experimental index
-15 o 10 20 30 o 0. . 2 0.3 0.4 0.5angle of incidence (deg) density d.1

Figure 5: Hydrodynamical versus optical Figure 6: comparison with Evans-Shipway
behaviour with varying incidence continuum model

3 CONCLUSION

We report here an attempt at verifying the homogenisation approach of wave propagation through
an ocean area filled with vertical evenly spaced cylinders proposed by Evans and Shipway at the last
Workshop [4]. The basic optical technique of light propagation across a prism is used as a model to
analyse water wave propagation across a triangular zone of piles. First of all we had to localize the
phenomenon in the whole parameters space; then, for cases where it was clearly observable, we verified
that the deviation angle follows the Snell-Descartes law of refraction as expected. The convergence
with the homogeneity factor has been tested for several cases, and the measured variation of the
refraction index with the pile network density agrees reasonably well with the formula proposed by
previous researchers. Nevertheless, it must be pointed out that the phenomenon appeared clearly only
for few cases among all our attempts. In the other cases, many spurious rays made the refraction
figure indecipherable, probably due to the isotropy of the network and the low level of homogenisation
we used here, for computer time economy reasons. The Bragg scaterring phenomenon as described
by McIver [2] in this application, could be also the source of unexplained results in some wavelength
ranges.
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Summary

The inviscid linearized wave pattern generated by high-speed monohulls and catamarans is inves-

tigated theoretically with a particular view to determining the rate at which the maximal wave range

on a longitudinal cut drops off with transverse offset from the track of the vessel. It is shown that

the maximal wave range varies approximately with the offset raised to an exponent. The value of this

exponent generally lies between -1.06 and -0.20, depending upon the speed of the vessel.

1 Introduction

The subject of the present investigation is the matter of the rate of decay of the waves generated

by high-speed vessels. In the past, it has been suggested by some persons concerned with the damage

caused by the waves behind river vessels, that the wave height varies with the inverse cube root of

the transverse offset from the track of the vessel. This misconception presumably has its origins in

a misunderstanding of the work of Wehausen and Laitone (1960, p. 487, Equation (13.42b)) and of

Stoker (1966, p. 242, Equation (8.2.40)). Those equations are only applicable for the variation along

the Kelvin angle in the linearized far-field wave system generated by a point source traveling in deep

water.

This rate of decay has also been investigated by Day and Doctors (2000), with some emphasis

being placed on an elementary tent-like element. In the current work, we shall investigate the effect

of some fundamental parameters, such as the length of the vessel and the choice between monohull

and catamaran.

2 Mathematical Formulation

The coordinate system and principal parameters defining the problem are shown in Figure 1(a).

The vessel has a length L, a draft T, and the beam of the hull or demihull is B 1 . The spacing between

the demihulls, in the case of a catamaran, is s. The width of the river or the canal is w and the depth

of the water is d. The density of the water is p, the acceleration due to gravity is g, and U is the speed

of the vessel.

The formulas of Newman and Poole (1962) have been used to compute the wave resistance of the

vessels. Regarding the wave elevation, one may consult the work of Tuck, Scullen, and Lazauskas

(2000) and Doctors and Day (2000).

3 Computer Program

Advantage was taken of the obvious spatial recursion relationship between two corresponding terms

in the summation for the wave elevation, for two points in the wave field. In this way, considerable

computational effort was saved.

Calculations were extended to a distance of at least 30 fundamental wave lengths downstream of

the vessel. It was also important to ensure that the downstream distance was sufficient in order to

capture the relevant data for the longitudinal wave cuts with the greatest lateral offsets. At least 30

points were computed for each wave length.
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L = 30 m

xy

Figure 1: Definition of the Problem Figure 1: Definition of the Problem
(a) Coordinate System (b) Modified Wigley Hull

In the case of deep water, it was found that the width of the canal could be chosen on the basis
of the well-known Kelvin angle in order to avoid reflections from the side of the canal. Thus, in some
cases, a width of up to 5000 m was chosen, in order to limit this source of error in the wave elevation
to less than than 1 mm.

4 Test Vessels

A modified version of the hull defined by Wigley (1934) was used here to create a parent hull. The
hull has parabolic section bilges and parabolic waterplane ends, as shown in Figure 1(b). The vessel
has a variable amount L1 of parallel middle body, which allows one to choose the prismatic coefficient.
The vessel can also have a wall-sided region of draft T1 near the waterplane.

All six of the vessels possess a displacement of 60 t and draft of 1.5 m in fresh water and have
a maximal section coefficient of 0.8333. The three monohulls have a beam of 2.0 m. The three
catamarans have a demihull beam of 1.0 m and a demihull spacing of 10.0 m. Overall vessel lengths
of 24 m, 30 m, and 36 m were selected.

The analytic expressions for the wave functions for this vessel were presented by Doctors (1995).

5 Wave Resistance and Wave Elevation

The wave resistance for the three monohulls is plotted in Figure 2(a) and for the three catamarans
in Figure 2(b). One should observe that selecting a series of vessels with the same effective wavemaking
length Lw = CpL causes the humps and hollows of the curves to align horizontally. At the same time,
the greater lengths lead to dramatic reductions in wave resistance.

The wave contours for a monohull are depicted in Figure 3(a). The different character of the wave
pattern for the catamaran is noted in Figure 3(b).

6 Wave-Decay Curves

Four measures of the wave system were considered in this work. The "wave height", which is the
greatest difference between a consecutive trough and a peak, is often used in practice to indicate the
magnitude of the wave. For our principal measure, we shall use the "wave range" (range. This is simply
the difference between the highest and the lowest points in the wave cut.

Figure 4 shows the transverse decay of these wave measures for a monohull and for a catamaran.
A curve of the type

ý/ýj = A(y/yl)N

has also been fitted; it is seen that the fit is excellent for these cases.
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(a) Monohull at a Speed of 10 m/s (b) Catamaran at a Speed of 10 m/s

Finally, the "fitted" wave range (* for all six vessels is shown in Figure 5(a). One can see, again,

that the longer vessels always generate a lower wave range at the close cut where yi = 100 m, while
catamarans generate smaller waves than monohulls do. This is particularly true at the lower speeds.

The corresponding exponent N is shown in Figure 5(b). Here, it can be seen that a value of around

-0.33 would actually be representative for speeds between 8.0 m/s and 13.0 m/s. However, a value
of around -0.50 is certainly more applicable at the higher speeds. On the other hand, at some of the
lower speeds, this exponent can reach values as low as -1.06.

7 Conclusions and Acknowledgments

Future work should include an extension of the numerical investigation to include the effects of
finite depth. In this case, it will be necessary to take care regarding the spatial applicability of the
simpler far-field wave elevation that was utilized.

The authors gratefully acknowledge the assistance of the Australian Research Council (ARC) Large
Grant Scheme (via Grant Number A89917293).
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Abstract

Sloshing waves in a three dimensional tank are modelled using a pseudo spectral method based on fully
non linear potential theory. The formulation is based on the expansion of the velocity potential in series
of the natural modes of the tank geometry. Mode coefficients of the potential and nodal values of the free
surface elevation are determined by accounting for the fully non linear kinematic and dynamic free surface
conditions. The theoretical quasi-exponential convergence of the model with respect to the number of
modes is verified in the case of free oscillations in a fixed 2D rectangular tank. Further results are given
for 2D or 3D tanks submitted to forced motions. These results are found to be in very good agreement
with available data.

Introduction

Spectral methods are characterized by the expansion of the solution in terms of global functions. When
orthogonal functions are used, it can be shown that the approximation error decreases faster than alge-
braically. This behavior is referred to as exponential, or spectral convergence. The counterpart of this
attractive feature is mainly found in the limitation to simple domains. However, their computational
performances are such that spectral methods are prevailing for large scale computations in certain areas
of fluid dynamics. This is for example the case in numerical weather forecast. For a review of the ap-
plication of spectral methods in general computational fluid dynamics, see Hussaini & Zang (1987), or
Fornberg (1995). In applications to free surface inviscid flows, it is possible to use orthogonal functions
satisfying Laplace's equation, so that coefficients of the spectral expansions are determined through the
free surface conditions only. Fenton & Rienecker (1982) solved nonlinear 2D wave propagation problems
using spectral expansions both for the potential and the free surface elevation, under the assumption of
space periodicity. In Dommermuth & Yue (1987) , three dimensional wave problems were simulated using
a spectral method based on a perturbation expansion of free surface conditions. In Kim et al (1998)
, fully non linear simulations in 2D rectangular tanks of infinite depth were reported. In Chern et al
(1999), a spectral method based on Chebyshev polynomials was applied for solving fully nonlinear 2D free
surface problems in a rectangular 2D tank, with the advantage of a fixed computational domain obtained
by applying a time-depending a-transform to the vertical co-ordinate. In the present paper, a spectral
approach is applied to fully non linear sloshing waves in 2D or 3D rectangular tanks, using the natural
modes of the fluid domain as a basis for the spectral expansion, and solving the boundary value problem
in the physical space.

Mathematical Formulation and Numerical Solution

We consider a three dimensional tank, partially filled with an inviscid fluid. A cartesian fixed co-ordinate
system Oxyz is defined. Assuming potential flow, a problem for a scalar velocity potential (I) is set up.
The potential has to satisfy Laplace's equation in the fluid domain, as well as Neumann conditions on the
tank walls and bottom:

A-(M,t)= 0 MED (1)

*Abstract proposed for presentation at the 16th Workshop on Water Waves and Floating Bodies, Hiroshima, Japan, April
2001.
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U.n on solid boundaries (2)

In the present formulation, we suppose a single-valued free surface F, represented by z = 77(x, y, t).
The kinematic and dynamic conditions at the free surface are thus formulated as follows (with implicit
non-dimensionalization with respect to the mean water depth h and the acceleration of gravity g):

C7(X, Y t) .8,b &D .q &D O . M (x, y, z, t) E F (3)
Ot Oz Ox Ox Ox Ox
aýD(M, t) 1at - _Z _ 2 - 12 ; M(x,y,z,t) E F (4)

Then, we introduce a spectral expansion of 4 in series of natural modes of the tank:

3000

*(x,y,z,t) = amn(t) 'mn(x,yz) (5)
m=O n=O

where Tinn are eigen functions of the fluid domain, satisfying equations (1) and (2), and amn are time
depending modal amplitudes. Here we consider a parallelepipedic tank, for which eigen functions are
given by:

oh (kmn,(z + 1)) =-
'mn(.X,y,Z) = Cosh(kmn( 1) cos(kn, J) (6)

where 5 = (x, y) and k = (mv/L•, nw/Ln) is the wave number associated to each mode.
After truncation of the spectral expansion, equation (5) is fed in the dynamic free surface condition:

N:,: N 'y damn(t) 1~j d f ( XYrq) = -(Xy,t) - 1I(X'm,'t)I2 (7)

in=O n=0 dtO

In the solution of wave propagation problems using a spectral approach, the assumption of space
periodicity may be introduced to further expand the free surface elevation in spectral Fourier series [3].
Here for fully non linear sloshing problems, the free surface elevation cannot a priori be expanded in
Fourier series of horizontal co-ordinates. Thus 77(x, y, t) is represented by its nodal values at free surface
collocation points, on which free surface conditions are imposed.

Starting from given initial conditions, the initial boundary value problem is thus solved for ND modal
amplitudes of the potential and N,, nodal values of the free surface elevation. A standard 4th order Runge-
Kutta scheme is applied for advancing the solution in time, by integrating the free surface conditions as
ODE for aij and Ilk.

The system of first order differential equations for aij is obtained at each substep of the time marching
procedure by solving a system of linear algebraic equations resulting from the application of the dynamic
condition (7) at a sufficient number of collocation points on the free surface. This is in contrast with other
schemes for inviscid free surface flows in which nodal potential values are updating by directly applying
the dynamic condition. Derivatives of the potential appearing at the right-hand sides of the FSC's are
computed from the spectral expansions, while finite difference formulas are applied for the derivatives of
the wave elevation.

When the problem is solved on the basis of a perturbation expansion procedure, see e.g. [4], the
resulting time-invariant kernel is the same at each order of the expansion, and a FFT procedure can be
applied, with a O(NDLog(Nb)) effort at each time step. In the present fully nonlinear scheme, the kernel
of the linear system formed of values of 'mn(X,y, 7) is solution-dependent and has to be reevaluated at
each sub-step. A preconditioned GMRES iterative solver is applied for solution of linear systems. The
resulting cost is O(N•) for a well-conditioned system, i.e. when the number of iterations at convergence is
only weakly dependent on the size of the problem. The other significant part of the computational effort
is devoted to the assembly of the kernel and to the computation of potential derivatives, thus the global
effort is also O(N,,).

Numerical Results

2D free motion

In this section we consider a 2D tank, with initial conditions 7(x, y, 0) = 7o(x, y) and 4(x, y, z, 0) = 0.
The fluid is initially at rest, and the initial free surface profile corresponds to the first linearized eigen
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mode, with an initial steepness (•,na - .jri,)/LX- = 10%. The tank length is Lx/h = 2. This simple test
case aimed at a verification of the convergence properties of the scheme. Free motion simulations over 7
dominant periods were repeated with increasing number of modes and free surface nodes: Np = N7 =
11, 21, 31, 41, 51, 61, 71 . The maximum difference between the instantaneous fluid energy and the initial
(potential) energy has been computed in each case. Results are plotted in figure 1. The expected spectral
convergence is obtained, with a max relative error of 10-4 on the energy with 71 modes. The error oil the
fluid volume is about 10-7, and does not. vary significantly with Np. Free surface profiles corresponding
at each successive maxima of the free surface elevation are collected in figure 2.

101

0.1

0

M

10 0 0 3 4 0 0 7 0 0.511.

Number of modes used

Figure 1 (left): Convergence of the relative energy error with respect to number of modes
Figure 2 (right): Successive extrema of the free surface profile

2D forced motions

Here we consider a 2D tank with fluid initially at rest, submitted to a forced motion x(t) = a sin(wt).
The problem formulation is modified to account for the moving co-ordinate system, following closely
the approach of Wu et al (1998). in which nonlinear sloshing problems are solved using a finite element
method. The tank length is Lw/h = 25., a very shallow water case, for which strong nonlinear effects
are anticipated. The reduced motion amplitude is a/h = 2.5. The angular frequency is w = 0.9973w0 ,
where wo is the frequency of the first linearized natural mode. This is just a case presented in [7]. The
simulation has been run with 40 modes . Figure 3 below is the equivalent of figure 9 in [7], plotted with
the results of our spectral model. A bore is formed at the end of the simulation (figure 3-b). Results
from both approaches seem very similar up to the formation of the bore, at about t = 26. (figure 3-a).
Then results differ slightly. With the present spectral method, a steeper wave front followed by very short
waves are exhibited. However, no convergence tests have been performed to date on this case. Such tests
will be available for presentation at the workshop.
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Figure 3: Wave profiles for forced motions, L, 1/h =25., w 0.9973 w0 a/h =2.5 . (a): t = 0 -30.
(b): t =26 -36.
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3D forced motions

A shallow water case is now considered in the case of a 3D tank: L,/h = 25., Lu/h = 25. The parameters
corresponding to case (H) in table 1 of Wu et al (1998) have been selected. The tank is subject to a sine
motion along the first diagonal of the undisturbed free surface, x = ax sin(wxt); y = ay sin(wyt), with
a - ay -= 1.2h and wx = wV = 0.998wox. The simulation was performed with 1600 (40x40) modes. We
give below four examples of free surface profiles in the tank. Longer simulations and comparisons with
results given in [7] are underway and will be presented at the workshop, together with energy and volume
checks.
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At the previous Workshop, a numerical investigation of wave probes do not estimate correctly free-surface height.
water-on-deck phenomena was presented by the same au- As time increases (ef bottom plots in Fig. 1) two hori-
thors. A two-dimensional problem was considered. The ef- zontal jets develop after the impact of the plunging fluid fron-
fect of main wave- and body-parameters was studied. The t. One of the two moves backwards towards the bow edge
fully nonlinear problem was solved by boundary-integral e- and reduces the cavity volume, The other propagates for-
quations. Here, we discuss a continuation of that activity, ward along the deck and increases the wetting velocity rel-
Results from an on-going experimental investigation are p- ative to a dam-breaking type analysis. As time passes, the
resented, together with the analysis of the interaction of the cavity moves forward, convected together with the shipped
fluid on the deck with superstructures. water. Also, the water level above the cavity increases and

contributes to squeeze it. This combined actions are respon-
Experiments Two-dimensional water-on-deck (w.o.d.) sible, together with surface tension, of the fragmentation of
modexp ter ts athe cavity, though we cannot document this evolution because
model tests are on-going in a narrow wave flume (13.5 m o h iie rm aeo h ie aea

long, 1 m deep, 0.6 m wide). Incoming waves are generated of the limited frame rate of the video camera.

by a flap wavemaker hinged at 0.1 m from the bottom. We used fluorescent material injected in front of the bow
The selected body-parameters are: draft D = 0.2 m, length edge to detect a possible vortex-shedding in the initial stage
L = 1-5 m, freeboard f = 0.05 m. The bottom corner at the of the phenomenon. In particular, we observed that, after the

bow was rounded with a radius of curvature 0.08 m to avoid air entrapment, when the cavity starts to move forward, the

significant vortex shedding. Body motions are restrained, gravity has already organized the run-down of the fluid in

Since the generated wave system is highly transient, with front of the model, preventing the beginning of vortex shed-
the first crest generally steeper than the following ones, we ding, at least of strength large enough to be detected by the
decided to focus on the first w.o.d. event, used method. At this stage, the flow pattern can be sketched

Fig. 1 is representative of the behavior when the flu- as one stream wetting the deck and one involved in the run-

id invades the deck. The nominal incoming wave length is down, with negligible cross-flow at the bow edge.

X = 2 m and the wave height H = 0.16 m. At the beginning These new features observed in the experiments are not
the fore-part of deck remains dry, and the shipping of wa- modeled in our computations, where the fluid is allowed to
ter starts in the form of a rounded jet plunging directly onto wet the deck as soon as it exceeds the freeboard. A better

the deck. A cavity is formed with air trapped inside. This modeling would probably require the use of a Kutta-like con-

behavior has been observed in all the test-conditions we s- dition, with the fluid leaving tangentially the front bow-edge,
tudied. Moreover, though for the case shown the jet hits the and the description of the jet plunging onto the deck. The

deck rather close to the bow edge, cases are recorded were free surface shape close to the separation point at the bow

the fluid organizes itself to plunge on the deck further from can be found by a local analysis, Zhao & Faltinsen (1998).

the bow. Finally, in a few cases even blunter impacts have This gives zi = C(t)x•/ 3 . Difficulties related to high fluid ve-
been observed. In all cases, the front view of the event con- locity are expected during impact, and may be alleviated by
firmed the two-dimensionality of the phenomenon and ex- locally using a Wagner-type of analysis. The final collapse of
cluded that the cavity formation is related to localized three- the cavity would require other methods.
dimensional instabilities. As a consequence, the initiation of In spite of this, we applied our method to simulate the
deck-wetting should be characterized by localized high im- experiments, and results (solid lines) for later stages of the
pact pressures. In the reported example, the time scale in- phenomenon are compared in Fig. 2 with experimental free-
volved is rather short, about 0-12 s, and at the instant of im- surface profiles, o. In particular, to reproduce as close as pos-
pact the entrapped cavity has length IcavID ! 0-16 and height sible the experimental set-up, the actual wave flume has been
hcav/D -_ 0-05. This fluid behavior was not mentioned in modeled numerically and the motion of the physical flap has
the two-dimensional experiments reported in Cozijn (1995). been used to drive the numerical one. However a mathemat-
This may be due to the small time and space scales involved. ical damping region different from the physical wave beach
A consequence of the presence of the cavity is that capacity was used. This difference matters initially when a seiching
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Figure 1. Water-on-deck at the bow of a 2-D ship. Top: initial stage of the wetting. Bottom: cavity formation and transition to dam-breaking type
of flow.

S_ exp. data 0

At =0.26s At 0.30 s SAt= o.34s"~S wod" "wood
-00• -0.8 -07 -0o 0. - 0. 0 . 07 .0.8 -o0.-o .08 -0.7 -.0.

x (m) x.(m) x (m)

02 0.-.

0.1--------- 0.I W.1"(m) o - sss s-• r1 (m) o • 1"(m) ....-

At9.38s Atw=0.46s
o"w s -4 "wod"

. - -)~ -0.1 -.o.. •. -woe -o.. - -o. -oo

x (m) x (m)

Figure 2. Water-on-deck on a 2-D ship. Comparison of numerical simulation with experimental free-surface profiles. Nominal incoming waves
conditions: ?, = 2 m, H = 0.16 m.

motion is set up in the tank. However the seiching ampli- on a vertical deck structure. Relevant numerical studies of
tude is small and minimized by the automatically controlled the phenomenon are reported in the following text.
wavemaker. Apparently, though we neglected the details of
the initial stages of water shipping and of the wave beach, Fluid-structure interaction Greco et aL (2000) studied
results agree well with measured profiles (obtained through the two-dimensional impact of water on a rigid vertical su-
the digital record of the video camera) with the exception of perstructure after a dam break. Here, we investigate the in-
the wave front region were the numerical method predicts a fluence of hydroelasticity. The left plot in Fig. 3 gives an
higher velocity. This suggests that the gross flow evolution is example of longitudinal steel stiffeners adopted for the deck
not significantly affected by the phenomena connected with house of a FPSO unit. We focus on the effects of those be-
the initial plunging. The instant twod in Figs. 1-2 indicates tween deck 8 and deck 9 by using an equivalent Euler beam.
the instant of water-on-deck starting in the numerical simula- The upper portion of the deck house is assumed rigid. The
tion. Future tests will include the impact of the green water cross section is shown in the right plot. Recent accidents for

FPSO units documented in Ersdal & Kvitrud (2000), suggest
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Figure 4. Impact with a vertical wall after a dam-break (left). In the table, the 'exact' solutions (A) for natural periods are compared with results
from the simplified analysis (B) sketched in the top-right plot.

to use a freeboard exceedence of 10 m. The flow is originat- progressively for higher-order modes and confluence of dif-
ed as the breaking of a dam located at the bow, with height ferent boundary conditions at the edges of the beam implies
h = 10 m and length 2h (cf Fig. 4). The beam is locat- locally a poorer convergence. Therefore, a simplified ana-
ed d, = 2.139h from the dam, with length L = 0.31 lb. The lytical analysis (top-right plot in Fig. 4) is also considered
lower edge is clamped, while rotations at the upper edge are to check the present results. The incoming water is approxi-
constrained by a spring with constant k0. The deformation mated by a strip of fluid with constant height H, and the po-
w(z, t) of the beam is expressed in terms of the known dry tential tpj due to j-th mode oscillations with unit amplitude
modes yj(z) of the beam with unknown amplitudes ý1 (t). is computed with toj = 0 along the free surface. A solution
Structural damping is neglected. is found by separation of variables and a Fourier expansion

The fluid-structure interaction is studied by coupling the of the mode over the wetted surface. The height H is a free

nonlinear potential fluid model with the linear beam. For a parameter chosen by the following considerations. In the ap-
given time, w and wt are known and the b.v.p. for the poten- proximate problem, it is found that the fluid furtheraway than
tial tp is solved by imposing np, = wt along the beam. For the -. 0.79L from the beam is practically not affected by vibra-

hydrodynamic pressure at the wall, ptt is found by solving a tions. Therefore H is determined by imposing that masses of
similar b.v.p. with the exception of the boundary condition fluid involved in the approximate and exact problems are the

at the beam, where the Neumann condition is substituted by same. In this procedure, particles above the beam are neglect-

a non-homogeneous Robin condition. The latter follows by ed because their role in the hydroelastic problem is expected
inserting the condition for pt,, into the beam equation and rep- to be small. This procedure gives an H/h = 0-207. The ratio
resents the fluid-structure coupling. Once the 9t is known, wtt natural wetted-period to natural dry-period Rj = Tjwet/ Tjdy is

can be evaluated and fluid motion and structural deformation computed and compared with results obtained by the 'exact'

can be prolonged in time. A similar procedure was applied problem. This comparison is tabulated for j = 1,2, 3 in Fig. 4
by Tanizawa (1999) to analyze the impact of a flexible body for k0 = 0, - and shows a promising agreement, more evident
on a free surface. for the higher modes, as we can expect since their sensitivi-

The initial conditions, r = tv/l = 0, are shown in ty to the fluid details is smaller. Left plots in Fig. 5 give the

Fig. 4, together with a later free-surface configuration, when time evolution of ýj for the first two modes, in the case of

the wetted portion of the vertical wall is almost 3L. The flow k0 = 0. Late stages are presented for j = 1,...,4. After the

generated after the impact is characterized by a narrow jet beam is completely wetted, - 0.l2, the modes oscillate

of water rising along the wall, also observed in case of rigid with almost constant period and amplitude. Both the value of
wall. ej and the amplitude of oscillations decrease as the order of

mode increases. This behavior does not change substantiallyThe numerical solution can be negatively affected by a when the parameter K6 = koL/EI is varied (El is the beam
variety of difficulties: spatial and time resolutions decrease
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Figure 5. Left: Amplitude of the first four modes as a function of time. Table: ratio of natural wetted-periods to natural dry-periods for the first four
modes of the beam. K= koL/EL. Right: free surface for three different instants after the impact (solid lines: rigid wall, o: ko = 0).
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Figure 6. Left: sketch of the loaded beam. Center: deformation of the beam for At = 0-12 after the impact. Right: maximum tension and
compression stresses as a function of time. Quasi-steady (dashed lines) and hydroelastic (solid lines) analyses (ko = 0).

bending stiffness). Qualitatively we observe smaller ampli- the quasi-steady analysis. This documents the unimportance
tudes as it increases and a minor influence for higher modes, of hydroelasticity in this case.
which are less sensitive to the boundary conditions. In gen-
eral, Rj decreases as K0 increases and it is smaller for higher This research activity has taken place at the strong Point Centre on Hydroelasticity in

j (see the table). The highest natural wetted-period changes Trondheim, supported by NTNU and MARINTEK. The research has also been support-

from - 0"018 to - 0-026 Vh/g as we go from K6 = - to 0. ed by the Italian Ministero dei Trasporti e della Navigazione through INSEAN Research

This means Tiwet is small compared to the time duration for Program 2000-02. The mobility of M.L. is partly supported by ONR through University

the beam to be wetted. It implies that the hydroelasticity does of Hiroshima.

not play an important role for the resulting maximum strains
(cf Faltinsen (2001)).

The rigid wall results, solid lines, are compared with the REFERENCES
clamped-supported beam results, o, in the right plot of Fig. 5 Cozijn, J. L., " Development of a calculation tool for
for the free-surface configurations at three instants of time green water simulation", MARIN Wageningen / Delft Univ.
after the impact. The overall pattern is not affected by wall of Technology, the Netherlands, 1995.
deformation. Ersdal, G. & Kvitrud, A., "Green water on Norwegian

In Fig. 6, we analyze maximum stresses on the beam production ships", Proc. 10 th Int. Conf. Offshore and Polar
based on hydroelastic and quasi-steady analyses. The lat- Engg, ISOPE'2000, Seattle, 2000.
ter means rigid structure from a hydrodynamic point of view Faltinsen, O.M., "Hydroelastic slamming", J. Marine
and resulting static structural deformations. Fifteen modes Science and Technology, Vol. 5, No. 2, 2001.
are used in the calculations. For the considered cases, maxi- Greco, M., Faltinsen, O.M. & Landrini, M., "Basic S-
ma are always observed at the bottom end. In particular, left tudies of Water on Deck", Proc. 2 3rd Symp. on Naval Hy-
plot, the fluid-induced bending moment gives tension stress- drod., Val de Reuil, National Academy Press, Washington
es (t) in the wetted side, and compression stresses (c) in the D.C., 2000.
opposite side. The deformation of the beam for AT = 0-12 Tanizawa, K., "A Numerical Simulation Method of Hy-
after the impact is given in the center-plot, where it is al- droelastic Water Surface Impact Based on Acceleration Po-
so sketched the direction of the incoming water. The right tential", Proc. FEDSM99, 3 rd ASME/JSME Joint Fluids Eng.
plot gives the maximum tension and compression bending Conf., San Francisco, 1999.
stresses. Compression stresses reach larger values than ten- Zhao, R. & Faltinsen, O.M., "Water Entry of arbitrary
sion ones. This is because the cross-sectional neutral axis is Axisymmetric Bodies With and Without Flow Separation",
closer to the wetted side. We note that magnitude of hydroe- Proc. 2 2nd Symp. on Naval Hydrod., National Academy
lastic results oscillates around a mean value close and above Press, Washington D.C., 1998.
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AIR CUSHION UNDER FLOATING OFFSHORE STRUCTURE

R. Gueret and A. J. Hermans
Department of Applied Mathematics, Delft University of Technology, The Netherlands

1 Introduction

In this paper, we present a new integral equation to describe the motion of an air cushion supported
platform. These platform are studied as a design concept for floating airports. The amplitudes of motion
of such body are expected smaller and a better repartition of pressure on the body reduces the mechanical
structural loads. In this paper, we study the behavior of an air cushion supported floating platform exited
by waves. The platform consists of a rigid body and an air cavity beneath it. We assume that there is
no air leakage. For clarity, we restrict our theory to heave motion.
We assume the flow being potential reducing the problem to the determination of a potential $ and use
usual assumptions of linearized potential theory. The platform's boundary E is split into the boundary
E 1 for the wetted part of the platform, and E 2 which is the free surface underneath the platform and
submitted to air cushions pressure. An integral equation is then given for the determination of the
potentials of diffraction and radiation. It is possible to extend the method to several air cushions,
connected or not, and to take into account the pitch motion.

Sr. Sr

6 6annD+ :6D1
D-

Figure 1: Definition of the geometry

2 Boundary conditions

We define 71 to be the surface elevation under the cavity, S the interface of this cavity at a distant of
H meter from the free surface, V1, and Pcs the volume and pressure in the cavity when the platform is
at rest. The instantaneous pressure PC is supposed to be uniform in the platform cavity. We have the
following kinematic and dynamic condition at the interface E2 :

C9 oD 097 iPa = -pgH - pg77 - p 5 ,- at - az (1)

The change of pressure can be determined by the change of the volume of cavity. The air compression
obeys the adiabatic law and we can write:

_p = I(2)

r 2
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where ý is the platform heave motion and y 1.4. Combining relations [1] and [2] leads to the boundary
condition on F2.

04¢ 0¢ P • OAV

- + pV 3  Ot

sJ Z PV~8 O
or t---Y _ + g-TZ + V•J -z pc O-0

Let a -7c
pg V.,

aS, which is a non-dimensional number, represents the ratio of the force due to air compression by the
buoyancy force.
In frequency domain, we write •(x,t) = O(x) e-it and we have then the boundary conditions:

-iI+ +90 -dS + iwaS= = 0 = -iw~n 2  (3)

We also add the usual linearized free surface condition at z = 0 and the Sommerfeld radiation condition
at infinity.

3 Boundary value problem

The fluid domain is split in two regions, separated arbitrary by an interface OD. The platforms stays in
the region D- and the region towards infinity is defined as D+. The potential function in D+ is written
as the superposition of the incident wave potential and a diffracted wave potential as follows

o(_) = 0,flC(K) + 0+(W

In D+, the total potential is denoted as 0- (_). At the dividing surface aD we require continuity of the
total potential and its normal derivative.
We introduce the Green's function 9(x, ) that fulfills A9 = 4wS(x-_), the free surface and the radiation
condition.
Applying Green's theorem for 0+ and 0- leads to the following formula:

for x E D- :

0 -J (W5 +-g-b)dS

fr- (00 (4)
Tn On

SFU•UO8V

The integrals over SFo and SF become zero, due to the free surface condition for 0, + and b-. Adding
up the two expressions in [4], leads to:

ff og a-.ror g

47r3- n , - ) dS + S! ([] On - 9 [ "b dS for xE D

or 47r¢- (0- Onn - 9 ) dS + 4,0flc
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When x tends to E, we have then

2-,,6- = 47rOý" + (¢_0- _' I s(5

an On

We decompose the potential into a potential of diffraction and a potential of radiation

diffraction:
From [3], we write the boundary conditions for co,:

Vo +OD +a 0 0 dS-z az On

let TD -S d-.,

E 2

Integrating [3] on E2 and re injecting the result in the equation, we obtain:

7D - SI D dS and W = _j

Following Noblesse, we can write:

OG - g,' 4) =72 (r, r 1) +- - (c -\ + V ( - -I

The potential 6D is then found to be solution of the integral equation:

27rOD J 'g -•dS - ?i 6D dS - + f ' dS x OD dS =- no (6)

rE r E2 S E2

radiation:
We apply the same procedure for the radiated potential. The boundary equations read:

{-v zo++R I ffoRu} {n 2 }<nV, bR + OO + a • d.S - S, = 0 .o = n,
E2 E

and we find:

7R 1+S JJ(RdS+S2•} _ V, I 3• _ M SORdS+__as

f-On'+1S+ asn I+aS l+ aS

We obtain the integral equation for nR

27rn~n dS 3RR OR9 Sf H I dS - :'1dsx O Sed

-fan <T",I+(IS ffiS

- 1f dS - !9n, dS (7)
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4 Numerical results

We apply our model to a 250m long and 78m wide rectangular platform. The total height is 15m and
the water free surface in the air cushion is at distance of 10m from the mean sea level. The vertical
walls thickness, surrounding the air cavity, is 4m for the 250m long side walls , and 6m for the 78m
long end walls. With these values, we find a = 2.4310-'. In Figure [2] and [3], we compute the added
mass and damping coefficients for heave motion. In figure [4] we compare the amplitude of the platform
elevation for a unit height incoming head wave with the experimental results of Pinkster. The agreement
is good. In figure [5], we compute the wave elevation amplitude in the air cushion. We check that, in
agreement with our assumptions, no resonant mode will generate waves that hit the horizontal deck of
the air cushion platform.
WVe first note that we obtain a negative added mass for a large range of frequency and also with dis-
continuities. This is due to the small width/length ratio. For wider platform this phenomenon never
occurs.

* -.

o 4 0 * *•i 0 2 04 CC C I tO

Figure 2: Added mass Figure 3: Damping

Figure 4: RAO Figure 5: Wave elevation
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1 INTRODUCTION

The waves generated by ships sailing on rivers or canals differ much from those in the open deep
sea. Shallow water waves are typically steeper and, hence, nonlinear. They can damage river
banks and endanger other ships. Natural rivers and artificial canals are getting increasingly too
small for the present and future traffic. To survive in today's aggressive competition between
different modes of transport inland ships have to become larger and faster. With increasing ship
size the ratio of water depth to draft is getting smaller and, hence, fairways need to be dredged.
In this work the influence of the bottom topography of a canal on the waves generated by a ship
at near-critical speed is studied. The wave pattern is found to differ significantly from the hori-
zontal bottom case. Moreover, the danger arising from a ship sailing in a canal at an ill-adapted
speed is pointed out. The calculations are based on shallow-water wave equations of the Boussi-
nesq type, which have been previously used to successfully simulate the waves generated by a
ship in a canal with a horizontal bottom, see Jiang & Henn (1999).

2 MATHEMATICAL FORMULATION

2.1 Coordinate System

A right-handed ship-bound coordinate system Oxyz is used. The origin 0 lies at the stern in the
intersection of the undisturbed water-plane and the ship's longitudinal center-plane. The x-axis
points in the direction of ship's forward motion; the z-axis, vertically upwards. The ship sails at
speed V along the centerline of the canal. Running trim and sinkage are ignored.

2.2 Field equations

The fluid motion is described by the modified Boussinesq equations as given by Jiang (1998):

ýý - V4x + (4x + hx)u + (ý + h)(u. + v,) + (4y + hy)v = 0

ut - Vuý + uux +VU + g4x
h h[h~u, + 2hxutx + hut,. + hxyvt + hyvtx + hxvty + hvtxy

_ V(hx ux + 2h.,u.x + hxy ux + hy ux + hxvy)
h2
-3 -[u, + Vt - V(u_ + v,)] = 0

v, - Vvx + uvý + vvY + g~y

- h [hxyut + hxuty + hyutx + hutxy + hyyvt + 2hyvty + hVtyy

h2

t [u, + vhY - V(u+ + v +h +2 h 0

3 -

Here, h(x,y) is the water depth, t(x,y,t) is the wave elevation, u(xy,t) and v(x,y,t) are the depth-
averaged perturbation velocity components in the x and y directions, respectively, t is the time,
and g is the acceleration due to gravity.
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Fig. 4 Wave pattern and longitudinal wave-cuts at locally critical speed in a river-like canal

Fig. 5 Density plots of wave pattern generated by
a ship moving onto a beach

SME 5.3 Ship moving into a gradually shallower
region

Fig. 5 shows a time series of density plots of the
wave pattern produced by a ship sailing steadily
into shallower water on the center-line of a rec-- •tangular canal with longitudinally sloping bot-
tom. It is somewhat like running onto a beach.
The ship starts its run in water of depth 5 m.- Soon two solitary waves are generated. Before- more solitary waves can be generated the water-• gets shallower. The second solitary wave being
on deeper water is always faster and finally
catches up with the first, while the ship over-
takes them both. In the last plot in Fig. 5 the
ship has reached the right edge of the calculation
domain where the water is 1 m deep.

6 CONCLUSIONS

It has been shown that the bottom topographyU has an important influence on the waves gener-
ated by a ship in a shallow canal. The typical
solitary waves generated by ships moving at

near-critical speeds in shallow canals and easily observed in model tests acquire a more complex
geometry if the canal bottom is uneven. The local depth Froude number is not the simple criterion
for their occurrence. The specially high waves prevailing in the shallow bank zones of the canal
may endanger other ships and damage the embankment. As a precaution ships must not sail at
transcritical speeds in rivers and canals with river-like profiles.
Although wave resistance was not explicitly considered in this work, it is reasonable to expect
that it will also be subject to the influence of bottom topography. It would be of much interest to
model a more natural river bank as a partially reflecting boundary in future studies.
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2.3 Boundary conditions

On the boundaries of the computational domain sufficiently ahead of and behind the ship the
Sommerfeld radiation condition

q, +aqý =0

is applied, where q stands for each of the variables ý, u and v, with a = -V + ,g_ ahead of the

ship and a- = -V - g behind the ship. The ship and canal are assumed to be both symmetric
about their common longitudinal center-plane. So the entire flow is symmetric:

ý W = 4 (-y) , u(y) = u(-y) , v(y) = -v(-y)

Therefore, the computational domain may be restricted to the half-plane y > 0. The vertical canal
side-walls are supposed to be impermeable and perfectly reflecting.

2.4 Ship modeling
The flow perturbation caused by the ship hull is locally approximated by the slender-body theory.
Therefore, the transverse velocity component v on the center-plane y = +0 is given by

1 VdS
, O<_x<L=,2 h dx

0 ,elsewhere

An inland passenger ferry (Main dimensions: L = 39.29 m, B = 8.84 m and T= 1.2 m) is used as an
exemplary ship; for further details see Jiang & Sharma (1998).

3 NUMERICAL METHOD
The field equations are discretized in space and time using the (symmetric) Crank-Nicolson finite
difference scheme. The resulting sparse matrix is solved by a standard SOR (Successive Over-
Relaxation) method, namely, the Gauss-Seidel algorithm. A detailed description can be found in
Jiang (1998).

4 CANAL TOPOGRAPHY

Two essentially different types of canal-bottom topography are simulated: (i) A set of polygonal
cross-sectional profiles which are uniform over the whole length of the canal; (ii) A rectangular
profile with linearly decreasing water depth in the direction of ship's motion.

4.1 Configuration A
In configuration A the canal is 100 m wide; the water depth is 5 m in the central portion between
two symmetric knuckle lines from where it decreases linearly to 1 m at the vertical side-walls.
The y-coordinate of the knuckle varies from 50 m in case (a) - that is a rectangular profile -
through 37.5 m (b), 25 m (c) to 12.5 m (d), see Fig. 1. Such profiles occur in many inland water
canals.

y -t

a b c d I

Fig. 1 Four different profiles of the canal configuration A

4.2 Configuration B

In configuration B the canal is also 100 m wide; the water depth varies from 5 m in the center to
3 m at the side walls as shown in Fig. 2, simulating a natural river with a deepened fairway.

SE

25 m

30 m

50 m

Fig. 2 Profile of the canal configuration B
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5 RESULTS

5.1 Configuration A
Fig. 3 shows calculated wave patterns at ship speed 7 ms-i corresponding to local depth Froude
number unity. In other words, the ship is sailing at critical speed for the depth at the canal cen-
ter. In the rectangular profile (a) solitary waves running ahead of the ship can be clearly ob-
served. They vanish gradually as the shallower outer region of the profile gets larger: (b) -4 (c)
(d), probably because the Froude number based on mean depth, grows increasingly supercritical.

(a)

(b)

(c)

(d)

Fig. 3 Density plots of wave patterns at the same (locally critical) speed in different canal profiles

5.2 Configuration B
The ship moves again at a speed of 7 ms-1. Fig. 4 shows the calculated wave pattern and longitu-
dinal wave cuts at two chosen transverse locations. Looking first at the wave pattern, two solitary
waves are evident. But whereas in the canal with a horizontal bottom (Fig. 3a) the amplitude of
the solitary wave is constant over the full canal width, here the wave amplitude increases dra-
matically toward the side-walls. This may be hazardous for ambient traffic, specially for small
craft that preferably sail in the outer shallower region of the canal to evade heavier vessels at the
center. Comparing now the wave cut along the canal center-line (y = 0) with that near the side-
wall (y = 41.6 m), it is seen that the maximum wave elevation in the latter is twice as high. Such
high waves near the side-walls are, of course, also a menace to the river banks.
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The bow wave of a vertical surface-piercing circular cylinder in a steady current

John CHAPLIN

Department of Civil & Environmental Engineering, Southampton University, UK

1. INTRODUCTION

The bow wave of a vertical surface-piercing cylinder in a steady current breaks at modest Froude numbers. A
view of this flow is shown in figure 1, taken from experiments in which a 210mm diameter stainless steel
cylinder was towed at constant speed through water initially at rest (Chaplin & Teigen, 2000). The bow
wave is much like that of a blunt-bowed ship, where the resulting loss of momentum may represent a
significant proportion of the wave resistance.

Figure 1 Flow upstream of a cylinder towed at Froude number Fr = VlgJgY =1.64,

where V is the velocity and d the diameter, and Reynolds number Re= Vd/v =4.6 x10 5

In the experiments, the wave resistance of the vertical cylinder was estimated from pressure measurements
made at many points over its surface, and is plotted in figure 2 in the form of the equivalent loaded length
AL. This is defined by

(wave resistance) = AL x (drag per unit length far beneath the surface). (1)

The wave resistance increases rapidly once the Froude number has exceeded 0.5, and reaches a maximum at
a Froude number of about 1. At the peak it is equivalent to the loading, at deeply submerged elevations, on a
length of cylinder of about 0.8d.

In working towards an understanding of these results, this paper is concerned with the problem of predicting
the Froude number at which the bow wave of a vertical cylinder will first break. It is assumed that until this
happens the flow upstream of the cylinder is represented reasonably well by potential flow analysis, even
though in practice the downstream region will be dominated by the cylinder's wake.
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Figure 2. Wave resistance on a vertical surface-piercing cylinder expressed as the

equivalent loaded length AL. Re/Fr = 2.80 x 105.

In a reference frame (r, 0, z) fixed on the cylinder, the flow is steady. The origin is on the cylinder's axis at

still water level; z is measured vertically upwards, and 0 = 0 is the direction of the incident flow. Velocities

are normalised with respect to the incident velocity V, and lengths with respect to the cylinder's radius d/2.

The free surface boundary conditions are

V=Fr2(1-v 2_-v -v2) and vz=Vr +VOr 10 (2),(3)

After describing an approximate model for the flow, a fully non-linear numerical solution is outlined, using

the method of desingularised sources (Cao et al., 1991). In the approach followed here, the boundary

condition on the cylinder's surface is imposed by computing the three-dimensional image system associated

with each source.

2. APPROXIMATE SOLUTION

As a first approximation, flow in any horizontal plane is assumed to be that corresponding to two-

dimensional potential flow past a cylinder:

Vr = COS0 [I- !-2 ] = V----sinO0 [1+ 1]" (4), (5)
,1 21 -

and vz2 is neglected in (2). The vertical velocity follows from (3), and the vertical acceleration of a particle

is

dvz + I avz = 8Fr4 [-4+9r 2 -4r4 + (-3 +8r 2 -9r 4 ) cos20+3r6 cos40] (6)
dt vr r Or rl0

As the Froude number is increased, the expression on the right hand side of (6) first reaches a value of -1

(corresponding to a particle with a downwards acceleration of g) at a point on the surface of the cylinder r =

1, at 35.3' around from the stagnation point. This represent the conditions in which the water surface would

first break, and occurs at a Froude number of 0.465.
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Figure 1: Contour of integration

For the half-plane problem the solution will be sought as a superposition of exponential
functions of the form:

i_
w(x) W- =w1 (x) + w2(X) = an exp {innx} + w2(x) (8)

n

where for the platform with homogeneous physical properties it is expected that the constant
'amplitudes' an and 'wave numbers' Kn can be determined. It turns out that, for large
values of D, wi (x) is a good numerical approximation of the geometrical-optics solution. If
the physical parameters are not constant the method has to be extended according to the
more general 'ray' approach. Due to the fact that we consider a half-plane the real part of
Kn has to be negative or if the real part equals zero it must obey the outgoing condition. The
inhomogeneous term in the equation behaves like exp (ikox) this does not indicate that the
solution behaves accordingly. The physics of the problem shows that, for the semi-infinite
plate, the wavy part of the solution in the far field has a different real wave-number rl, as
has been made visible in the numerical simulations as well.

We introduce (8) in (6) and carry out the integration with respect to ý. This leads to the
relation:

Za (, 4-�u - 1) e1+x

an k oE)fl 1 _e ikx - e- dk + ( eikox (9)
an 27r , k \ko - n k+KJ

The integral has to be evaluated vor positive values of x. We transform the integral to
integrals along the vertical axis in the complex k-plane, we then obtain the contribution to the
modes in w, (x) explicitly. It turns out that the well known dispersion relation see HERMANS
(1997) is recovered. There are three physically realistic solutions for K:

(D.4 -_ + 1) r (10)

The two boundary conditions give two relations for the unknown values of the 'amplitudes'
a, and W2(0). In the first integral we also obtain a contribution of the pole, k = k0 , of the
integrand. The contribution of this pole has to cancel the inhomogeous term (c) eikox. This
leads to a third relation for an ,we obtain:

3 4 1
ko0(E) n- )- - an + I {W2} + (, = 0 (11)

n=1

The influence of w 2 (X) can be taken into account iteratively. Extension to a finite width
problem is straight forward. It will be explained how three-dimensional cases and the case of
obligue incident waves can be treated.

4. Results

In the figures below a comparison is shown of the results obtained, for the semi-infinite plate,
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by this method where the first iterate of w2 (x) is taken into account with results obtained
by TKACHEVA by means of an asymptotic evaluation of Wiener-Hopf results. The numerical
results obtained by means of a boundary element method for a finite platform of width
(I = 300 m. and D/pg - 105 m4 .) are shown. Next the asymptotic values for the reflection

"•w/( W( . !

. \ . . . . . ... . . ... ... ... .. ... ... ... . , / , ' , / /
i --- -- - ---..... "--"

0.6 0.5 0.6
" -- 0.3

0.4 ---- 0.1
0 .4 ---------- --- -------- --------.. . . . 0 .4 ,

0.2 0.2

0 0
0 0.5 X/l 1 0 0.5 x/l 1

(a) asymptotic results for a semi-infinite platform (b) numerical results for a platform with length
(TKACHEVA - • -) I = 300 m.

and transmission coefficients for the finite plate, where we neglected the influence of w 2 (x)
are shown. The final result is a comparison of the values of the deflection near the resonance
frequency are shown. In figure (c) one also gets an impression about the accuracy of the
zeroth order method. The coefficients may deviate about 5% from those obtained by the
direct computations.

1 , . ,

T
0.8

0.6
as

0.6 \

0.4 _,___ ..

0.4

0.2 nu
0.2

0 ,o/l 0
0.1 0.2 0.3 0.4 0.5 0 0.5 x/ 1

(c) Reflection and transmission coefficients for fi- (d) Comparison of the numerical and the asymp-
nite (I = 300 in.) and semi-infinite plate totic results for a finite (1 = 300 in.) and a semi-
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1 Introduction

The small time analysis of the starting flow close to the intersection between the liquid surface and a floating wedge
is considered. The liquid and the body are initially at rest. At some instant of time taken as the initial one (t = 0),
the floating wedge with deadrise angle -y impulsively starts to move down with a constant velocity V. The liquid is
assumed ideal and incompressible, and its flow potential. We shall determine both the liquid flow and position of the
free surface, which are uniformly valid during the initial stage, where Vt/ho < 1, ho is the initial draft of the floating
wedge.

The pressure-impulse theory was used by Sedov (1935) to obtain the liquid flow just after the impact instant.
Within this theory the boundary conditions are linearised and imposed on the initially undisturbed liquid boundary.
The theory predicts the flow singularity at the intersection points. The right-hand side intersection point, x = x,
y = 0, where x, = ho cot -y, is considered below. In a small vicinity of this point, r/ho < 1, the velocity potential
O(x, y, t) behaves like (lafrati & Korobkin 2000)

0 - -Art 0 cos(a00) , (1)

where ao0 = 7r/(203), A3 = 7r - -y and (r, 0) are the cylindrical coordinates with the origin at the intersection point
(see figure 1). The coefficient A depends on the entry velocity V, the deadrise angle -y and the initial draft h0 . Here
1 < ao < 1, which implies that the solution by Sedov predicts non-physical behavior of the flow close to the intersection
point and has to be considered as the first-order 'outer' solution. The higher-order 'outer' solution can be derived
using the small-time expansion procedure. In order to obtain uniformly valid description of the flow during the initial
stage, an 'inner' solution must be considered within stretched variables.

It is shown that in the leading order as Vt/ho -+ 0 the inner solution is non-linear, self-similar and depends only
on the wedge deadrise angle -y. Deflection of the inner free surface cannot be neglected even in the leading order in
contrast to the Sedov's solution. The solution of the inner problem is achieved by decomposing the fluid domain in
three parts: the far-field region, the intermediate region and the jet region. Asymptotic methods are used to evaluate
both the shape of the free surface and the velocity potential in the far-field region. The flow in the jet region is
described within the shallow-water approximation. The solution in the intermediate region is determined numerically
by iterations. A boundary integral representation is used for the velocity potential. Shape of the free surface in the
intermediate region is obtained using a pseudo-time stepping procedure developed. The shallow-water solution in the
jet region is updated at each step of the iterations and is directly incorporated into the solution of the boundary-value
problem in the intermediate region. It is shown that the developed procedure is stable and provides the combined
numerical-asymptotic solution of the inner problem with a given accuracy.

2 Formulation of the inner problem

The starting flow close to the intersection point x = x,, y = 0 is considered with the help of the stretched non-
dimensional variables

x = x, + a(t)A, y = a(t)p, O(x, y, t) = Aa'O (t)p(A, pa, t), a(t) = [(2 - ao)At] 2-0o. (2)

Substituting (2) into the original equations and the boundary conditions, we obtain that in the leading order as
a(t)/ho -+ 0 the inner flow is quasi-stationary, o ýo(Ap), and the entry velocity can be neglected compared to
velocity of the flow close to the intersection point.

•Free surface

Body contour

.,.Far fiedd

Figure 1: Sketch of the inner region for the small-time analysis.
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It is convenient to introduce the modified velocity potential S = W - ip 2 , where p - V 2 + j
2 , which satisfies the

following equations (lafrati & Korobkin 2000)

V 2S = -2 in the flow region, (3)

S,, = 0 along both the free surface and the wedge surface, (4)

S2 + 2aoS = (1 - go)p
2  along the free surface, (5)

12
S -•- p 2 - p 0 cos(goo) (p -•0 ), (6)

2

where S, and S, are the normal and tangential derivatives of the unknown function S(A,1 p) on the boundary. The
far-field condition (6) follows from matching the 'inner' solution (2) and the 'outer' solution (1). Therefore, in the
leading order the flow near the intersection point is self-similar and depends only on the parameter a0.

The inner problem (3) - (6) is non-linear and complicated. Moreover, the shape of the free surface is unknown in
advance and has to be determined together with the liquid flow. If the free surface is known, the dynamic boundary
condition (5) can be integrated providing the velocity potential along the free surface and, therefore, the velocity field
throughout the inner flow region in quadratures.

3 Asymptotic behavior of the inner solution in the far field

In order to reduce the size of the computational domain required to solve the inner problem (3) - (6), the asymptotic
behavior of the solution in the far field is estimated. It should be noted that the Stokes' procedure does not work in
this case and we have to map the far-field region onto a canonical one to find the asymptotic expansion of the modified
potential S(A, p). The free-surface shape in the far field is described by the equation 9 = 9(p), where 6(p) -- /3 as
p --- oo. It is useful to introduce the new angular variable a = 0/3/0(p) so that the fluid domain in the far field
corresponds to 0 < a < /3. Three cases are distinguished: (i) -y > 7r/4, (ii) "7 = 7r/4 and (iii) -y < 7r/4. In the case
"Y > R/4, we obtain

O}(p) =/3 + Uo poe-2 -o)(1 -ao) 9 a p)
2(P -+ 0 P , 2 -• -_ g ta ni(2y) p2,,,-4 + °(Pl,,,-4)ý 0 = °!7 ')

2-a0  2(2 - o)2  /3,
1 ) _ (2 sin(oa) + Cos[2(1 - o)a] (P20o-2), (7)s~p~ 2 2 - go 2os o cos(2-y) J

S +P j (p))~ 1 A 3(1, (7)
1 2+ a0o 2O-2 _ 0(1 -a) tan(2o0 +o(p 3 aO_ 4 ).

2pp p 2(2 - o) 2(2- ao)2

The corresponding expansions for the blunt-wedge case, -y _ 7r/4, have been also derived. They are more complicated
than expansions (7) due to eigensolutions, orders of which are comparable with the orders of other terms appeared in
the expansions.

4 Mass conservation

The inner solution has to be determined in the unbounded region, whose shape is unknown in advance. The matching
condition (6) shows that the mass flux incoming into the inner flow domain from the outer region is infinite. This
infinite flux has to be balanced in somnc sense by deflection of the free surface in the inner region and by the mass
outflow through the jet. In order to understand better the mechanism of this balance, let us consider a point E located
on the free surface in the far-field region and a point F located on the free surface in the jet region. We consider the
finite part DEF of the flow domain, which is bounded in the far field by the circumference p = RE, in the jet region
by a straight line orthogonal to the body contour through the point F, on the top by the free surface and on the
left-hand side by the body contour. Equation (3) gives

EFV
2S dAdpl = j an ds = - 2 :DEFI,

DEF JaEFý

where IDEF] is the area of the finite region DEF. According to the boundary conditions (4) on the free surface and
on the body contour, the normal derivative of S differs from zero only along the far-field boundary and on the jet cut
at F. When E tends to infinity both the mass flux from the far-field boundary and the area IDEF[ are unbounded.
However, with the help of the asymptotic expansions (7), it can be shown that the two contributions balance each
other for any finite RE, thus leading to a finite flux of mass through the jet cut.

Concerning the behavior of the solution in the jet region, there are two possibilities: (i) the jet is of finite length
and (ii) the jet is of infinite length. Whatever is the case, we assume that the fluid flows from the intermediate region
into the jet region through the cut F. In order to satisfy both the kinematic condition on the free surface and the
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body boundary condition (4) in the case of finite length of the jet and a non-zero angle at the jet tip, it must be
St(0) = 0, where T is the coordinate along the free surface with 7- = 0 at the jet tip. By differentiating the dynamic
boundary condition (5) with respect to T, we obtain

lir Sm (') -- S(O) = 2(1 - ao)pp,(O) - 2aoS,(0).
r 0+ T

Since S7 (0) = 0, the left-hand side is positive and the equality implies p,(O) > 0. On the other hand, •T(0) =

ST(0) + p(O)p, (0) > 0, which shows that in this case the liquid particles move in the jet region from the jet tip. This
result contradicts to the assumption about the flow pattern in the jet region. Therefore, infinite length of the jet is
expected.

5 Asymptotic behavior of the inner solution in the jet region

Asymptotic analysis of the flow in the thin jet region is carried out by using ideas from the shallow-water theory. It is
convenient to introduce the new Cartesian coordinate system Orq with the axis Oý directed along the body surface and
the axis Orq towards the liquid region. The jet cut F is given now as ý = ý0, 0 < q < h(ý 0 ), where equation r- = h(ý)
describes the free-surface shape in the jet region, ý > o0. Within the stretched variables rl = h(ý)z, h(ý) = h(ýo)T(ý)
and s(ý, z) = S(ý, h(.)z) the jet region corresponds to the strip, ý > ýo, 0 < z < 1, and the unknown functions T(ý)
and s(•,z) can be found in the forms T(ý) = To(ý) + h2 (4o)Tl(ý) +... and s(ý,z) = so(ý,z) + h2 (ýO)sl(ý,z) +...,
where h2 (ý0 ) is considered as a small parameter. Substituting these asymptotic expansions into (3) - (6), we obtain

Eq. (3) sozz = 0, sizz = -2To2 - T2so• 0 < z < 1
KBC (4) soz = 0, siz = ToCToso0  z = 1
BBC(4) soz = 0, siy= 0 z=0
DBC (5) s2 = (1 - oo)ý2 - 2oroso, 2 so~slC = (1 - a0 )T02 - 2oro s1 + T2 [(1 - a0o) 2 - 2aoso] z = 1

in the leading and for the second order, respectively. The system of the differential equations is numerically solved
with a space-marching procedure for ý > ý0, starting from ý0 and a given thickness h(ýo) provided by the solution in
the intermediate region.

6 Numerical solution in the intermediate region

In order to solve completely the inner problem, the numerical iterative procedure is developed to find the shape of the
free surface in the intermediate region. Both the inner potential o and the modified potential S, where 0 = S + lp'.
are used. The inner potential Wo satisfies the Laplace equation, solution of which is sought by using a boundary integral
formulation in the computational domain bounded by the far-field boundary, the body contour and the free surface.
The far field boundary (FF) is located at p = R with R being large enough so that the asymptotic expansion (7) is
expected to represent the solution with a given accuracy for p _> R. The same expansion is used also to assign the
value of the velocity potential along the far-field boundary.

The main issue is related to the free surface (FS) shape that is unknown and must be determined as a part of
the solution. To this aim a pseudo time-stepping procedure is adopted by using the asymptotic expansion (7) as a
first guess. Once the free surface shape is assigned, the distribution of the velocity potential along the free surface is
obtained by integrating the dynamic boundary condition (5), which is rewritten as S, = -V(1 - 0O)p2 

- 2ao-S , and
then using the relation p = S + p2 /2. On the wetted part of the body contour (BC) the impermeability condition,
OW1/0n = 0, is applied.

The solution of the boundary-value problem provides the velocity potential along the wetted part of the body and
its normal derivative along both the free surface and the far-field boundary. This allows us to compute VS on the free
surface and to verify then if the kinematic boundary condition, aS/an = 0, is satisfied. If not, the free surface shape is
updated by using VS as a free-surface velocity. Special treatment of the intersection between the free surface and the
body contour is required. The angle at the intersection progressively decays and, when it drops below a limit value,
the jet is cut off and is replaced by the jet region, where the flow is described within the shallow-water approximation
(see section 5). In this way we obtain the shape of the free surface and the distribution of the velocity potential along
both the body contour and the free surface. The shallow-water (SW) part is directly included into the boundary
integral formulation. In order to clarify the numerical procedure, the boundary integral representation is written for
a point x on the boundary of the computational domain, which leads to the following boundary integral equation

Sy)ds(y) / P (y)G(x- y)ds(y) =

W*x) +n P()G -5n( ~d y (8)

I/cus n (y)G(x - y)ds(y) - JFSUFFuSW a) (x - s

- 59 -



where the Cauchy principal value of the integral is taken for the singular ones. It must be noted that for x E FFU FS
the velocity potential is assigned and the first term on the left-hand side of (8) is moved to the right-hand side of the
equation.

In Fig. 2 a close up view of the region about the matching between the intermediate region and the shallow water
part is shown. On the left picture the geometry is shown whereas the distribution of the modified velocity potential
versus A is shown on the right. In both cases the transition between the two regions is very regular.

Two different checks were performed to evaluate the convergence of the solution and its accuracy (Fig. 3). The
integral of (SI/On) 2 along the free surface can be regarded as a measure of the accuracy at which the kinematic
boundary condition is satisfied. Moreover, the area enclosed between the disturbed free surface and its initial level,
I = 0, is computed and compared with the incoming flow from the far field boundary, in order to check the mass
conservation. Results show that convergence is achieved after about 1500 iterations (Fig. 3).

Finally, calculations are performed by varying the far field extension of the computational domain (R = 40 and 28)
and different values of the limit angle (100 and 50) for the matching with the shallow-water solution. In both cases
results show that the solution is essentially independent of those parameters (see Fig. 4), provided they are properly
chosen so that the corresponding asymptotic expansions hold.
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Figure 2: Close up view of the region about the matching between the intermediate region and the shallow
water part. (y = 600)
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Figure 3: left) Integral of (OS/On) 2 along the free surface; right) Incoming flow and area enclosed by the
free surface.
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Figure 4: left) Solutions obtained with two different extension of the computational domain are compared
close to the end of the shorter domain; right) Solutions obtained by using two different values of the limit
angle for the cut of the jet are compared in the matching region.
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1. INTRODUCTION

Several kinds of numerical method to estimate hydrodynamic forces and motions of ships advancing in waves
have been developed up to now. Typical examples, for instance, will be the Green function method and the

Rankine panel method in the three dimension. Especially the Rankine panel method may be the main current
of the most recent studies from the reason that it enables to apply more exact free surface condition. It also
enables to apply the numerical beach tequnique for the radiation condition when the method is extended to
the time domain. It is reported that it works well even for the low frequency range. In those methods, the

Rankine source is used as the kernel function of the integral equation. Therefore adequate numerical techniques
must be introduced for satisfying the radiation condition and some techniques have been already proposed. The
validation of the numerical accuracy due to those teqniques, however, have not been attempted enoughly for
the low frequency range. This comes from few experimental data because of the difficulty of the experiment in

the low frequency range.

On the other hand, it is suggested that the comparison of the numerical results with experiments on hydro-
dynamic forces and motions is not sufficient for the validation of the computation codes based on advanced and

complicated methods proposed nowadays[l] [2]. Actually it is very few to see the remarkable advantage of such
advanced methods against the strip method if we adopt those physical values for an index of validation. The

local physical value such as pressures should be used to make clear the advantage of advanced methods.
From these backgrounds, Iwashita et al. [1][2] carried out a systematic experiment for a blunt VLCC and

measured not only the hydrodynamic forces but also the wave pressure acting on the ship advancing in oblique

waves. In the experiment the low frequency range where the reduced frequency T(= Uwe/g) takes smaller value
than 0.25 appears in wide range depending on the attack angle of the incident wave, and the importance of the
low frequency range has been realized. Experiments were compared with some kinds of computation and the

importance of the comparison on the wave pressure has been also pointed out in the paper. Similar experiments
have been performed in the same way by some companies in Japan. However most of the hull forms are
confidential. We therefore can not utilize their experimental data for the validation of our computation codes.
One of the reason why companies hesitate to present their experimental data may be related to the expensive
cost and much time to get experimental data on the wave pressure. This may be settled if the local physical

value can be measured more easily and cheaply.

Iwashita [3] carried out the experiment for popular hull forms, Series-60 (Cb = 0.6 and 0.8), in order to get
data which everybody can use. The unsteady waves measured by Ohkusu's method [5] were adopted as the
local physical value and plenty of wave patterns were obtained through the experiments carried out in 1999 and
2000. The unsteady wave pattern physically means the unsteady pressure distribution on the free surface and
its measurement is not so difficult and expensive. In the experiment, so called k2 wave system which propagates
from the ship to the forward direction and k, wave system which propagates from downstream toward the

ship have been observed for 7 = 0.23. The ki wave with large amplitude which propagates from downstream

toward the ship and disappears at bow region has been also observed for T = 0.28. These are very interesting
phenomena in the low frequency range arround T = 0.25. In order to utilize those measured unsteady waves for
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the validation of the computation codes, measured data itself must be validated on the effect of the side wall of

the towing tank, which will be involved in the obtained data.

In this study the side wall effect of the towing tank on measured unsteady waves is investigated by simulating

the actual experiment numerically. The thin ship theory is applied in the time domain and the radiation

problem is solved corresponding to the experiment. The numerical result obtained considering side wall effect

is compared with the result obtained excluding side wall effect, and the effect of the side wall is made clear.

2. FORMULATION

The problem is simplified restricting our interest only in the radiation problem since both radiation and diffrac-

tion wave systems generated by the ship takes the same pattern as understood by the asymptotic theory. Then

we consider a thin ship advancing at arbitrary forward speed U(t) and oscillating with cirlular frequency w, in

the towing tank. The space fixed coordinate system is taken allocating its origin at beach side of the tank. The

ship motions are restricted in heave and pitch modes corresponding to the experiment and we express them by

3 (t) and 6 (t). The linear theory is employed for this problem assuming ideal potential flow.

The velocity potential O(x, y, z; t) of the fluid must satisfy the following initial and boundary conditions[4]:

[L] V20 = 0 in V(t) for t > 7 (1)

[F] a2 + g -- > =0 onz=0fort>T (2)

[H] _Vl on SH for t > r (3)

[W] -=0 on Sw for t > T (4)

at
111 -- T 0 on z = 0 for t = -r (5)

SH and SW denote the ship surface and the side wall of the towing tank respectively. When we assume a thin

ship which body shape is expressed by F(x, y, z) = y - f(x, z) = 0, the body boundary condition (3) can be

simplified as

= {-[u(t)±+ z~ (t)]f 1 -[6a(t)- x 5 (t)1fzj}/v1±+f+f (6)

Applying the Green's second identity to the fluid domain, we obtain the following two sets of equation:

o(P; t) = 2{-[U(t) + zWO(t)]fx - [63(t) - x 5 (t)]fz}/j/1 + f2 + f, for P on SH (7)

00(P;t) IJHH t OGo(P Q dSQ

ASi{I H (T) 0o(Q; I-) aGTpQt-r dSQ IdT
_ w Pt)f ft 0o(P,,Q

+ (P; t) aw(Q;t) dSQ
2 -) 19npw(PJJ Sw•t

0{JJS W(Q; T) GT (P,Q;t -)dSQ} Id7 for Pon Sw (8)- aw(Q; Onp

where P and Q show the field point and the source point respectively. Go and GT are the impulse response

functions defined by

Go(P, Q) = I (- - I ), GT (P,Q;t-) -gksin(,gk(t _- ))ek(z+z')Jo(kR) dk (9)

r= I/R•2 +(y-y') 2 +(z p z,)2 , R= x/(x -x') 2 +(yyý-) 2  
(10)
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We need not to solve the integral equation to determine the source distribution on SH since it is determined

explicitly by eq.(7).

If the source distribution is determined on the side wall for every time step, the wave elevation ((P; t) is

evaluated by

fOGT(P, Q; t - T)
-gX(P; t) =- a(Q; T) - dSQ} dr

i{JLW(1f 0w(Q;'r) GT(PQ;t dSQI dr on z =0

The forward speed U(t) and motions b3(t), W5 (t) are arbitrary functions in the present study. Therefore the

kernel functions Go and GT must be calculated for all P and Q at each time step.

3. NUMERICAL CALCULATION

The numerical calculation is carried out simulating the actual measurement of radiation waves experimented at

RIAM in Kyushu University by the author. The towing tank (L x B x D = 65m x 5m x 7m) is descretized into

the finite number of elements, and the forward speed U(t) and motions ,3(t), 5 (t) are given refering measured

results.

Computations are performed mainly for 7- = 0.23 and T = 0.28. For -r = 0.23, k2 wave system and k, wave

system progressing in forward direction has been observed remarkably in the experiment, Figs.1,3. For r = 0.28

the wave progressing in forward direction with large amplitude and disappearing in front of the ship has been

observed, Figs.2,4. Present numerical simulations are compared with those results, and we validate how the

side wall of the towing tank affects the measured results and whether the measured results are reliable or not.

If it is confirmed that the side wall effect is not so significant, we can utilize measured radiation waves for the

validation of arbitrary numerical methods in the low frequency range.

4. SAMPLE OF RESULTS

Figs.5 and 6 show the wave elevation due to the point source advancing at forward speed U(t) and pulsating as

a function o(t). U(t) and a(t) are given by U(t) = Uo(1 - e-dt) and a(t) = (1 - ect)(a + bcoswet). Constants

are a = 0.0(m 3 /s), b = 1.0(m 3 /s), c = d = 2.0, Uo = 0.886(m/s), w, = 2.55(1/s) in this example. The point

source is located at Q = (x'(t), 0, -0.2) and starts from x'(0) = 5.0(m). The wave elevation is computed along

the longitudinal axis of y = 0.2(m).
Figures show that the present computation ('TD' in figures) near the source point converges to the result of

the frequency domain ('FD') around t > 30. The correponding results considering side wall effect are illustrated

in Figs.7 and 8. The wave reflection from the side wall can be seen by comparing them with Figs.5 and 6.

Further calculations for the thin ship and for other conditions are now in progress, and all the results will be

presented in the workshop.
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WATER WAVE SCATTERING BY INCLINED BARRIER SUBMERGED IN
FINITE DEPTH WATER

Mridula Kanoria1 and B.N. Mandal2

1 Department of Applied Mathematics, Calcutta UniversityIndia

2 Physics and Applied Mathematics Unit, Indian Statistical Institute,India

1. Introduction : Water wave scattering problems involving thin barrier of arbitrary shape sub-

merged in finite depth water are generally tackled by some approximate techniques assuming linear

theory. The technique of hypersingular integral equation is demonstrated here in tackling the problem

of water wave scattering by an inclined thin barrier submerged in finite depth water. The corresponding

deep water problem was earlier investigated by Parson and Martin[1]. An appropriate use of Green's

integral theorem produces a representation of the velocity potential describing the irrotational motion

in the fluid region, in terms of the unknown dicontinuity of the potential across the submerged barrier.

Utilization of the boundary condition on the barrier gives rise to an integro-differential equation for the

discontinuity, which is interpreted as equivalent to a hypersingular integral equation. This is solved

numerically by approximating the discontinuity in terms of a finite series involving Chebysev polyno-

mials of the second kind followed by a collocation method. The reflection and transmission coefficients

are then estimated numerically using this solution. The force and moment(about the origin) acting on

the barrier per unit width are also estimated for various positions of the barrier. Comparison is made

with available deep water results. It is observed that if the mid point of the barrier is submerged to

the order of one-tenth of the bottom depth, then the deep water results effectively hold good, and in

that case, the finite depth problem can be modelled as deep-water problem.

2. Mathematical formulation : Let a thin straight inclined barrier F be submerged in water of

uniform finite depth h, and let d be the depth of its mid point below the mean free surface and the co-

ordinate system be so chosen that the position of F is described by y = d + ta cos 0, x = ta sin 0(-1 <

t < 1, d > a cos 0, h > d + a cos 0, 0 < 0 < 900, 0 being the angle of inclination of the barrier with the

vertical). A train of surface water waves of amplitude b0 and circular frequency a is incident from the

direction of x = -cc on the barrier. The incident wave potential Re{Oo (x, y)e-ijt} with

gbo cosh ko(h - y)eikox
a cosh koh

where k0 is the unique positive real root of the transcendental equation k tanh kh = K, with K

021g, g being the gravity. The ensuing motion in the fluid region described by velocity potential

Re{f(x, y)e-iot} where O(x, y) satisfies

V 20 = 0, 0<_y<h

Kqý+y 00 0 on y= 0,

- =0 on FOn

where t denotes normal derivatives on F,

r"/ 2 VO is bounded as r --* 0

where r is the distance from the submerged edges of F,
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0_= 0 ony=h

O Y) Tqo(x,y) as x --* oo,
o 0(x, y) + Ro(-x,y) as x-+--oo

where R and T are respectively the unknown reflection and transmission coefficients (complex) which

will be determined in the course of mathematical analysis.

3. The method of solution : By an appropriate use of Green's integral theorem in the fluid

region a representation of 0(ý, 71) at a point p -(, r)(0 < r7 < h) is found to be

1O, 1) - - F(q)G" (x,y y , 7)dsq (3.1)

where F(q) the discontinuity of O(x, y) across F and q = (x, y) is a point on F, and a denotes the

normal derivatives at q on F, and G(p; q) is given by (cf Banerjea et al [2])

r e-k(Y+71) cos k(x - 4)dk c e-khL(k, y)L(k, c -)
Slnr J 2r 1 k- K 2 k(k- K)A(k)

(3.2)

where r, r' {(x - ý)2 + (y :T )2}1/2,

L(k, y) = k cosh ky - K sinh ky, A(k) = k sinh kh - K cosh kh, (3.3)

and the paths C1 , C 2 are along the positive real axis in the complex k-plane indented below the pole

at k = K for C, and below the poles at k = K, k0 for C 2 .The boundary condition on F produces an

integro-differential equation, which can be interpreted as the following hypersingular integral equation

in [1] 1 92 0G(p; q) a00
_1 F(q) dsq - , p E r (3.4)

27rIF Onpo~nq Onp

for the determination of F(q), where the cross on the integral sign indicates that it is to be interpreted

as a Hadamard finite part integral.

Denoting ý, ,r by • = uasinO, q1 = d+uacosO -1 < u < l it can be shown that

02G(p; q) 1 [1(u, t)] (3.5)

&flpgflq a 2 ,L(u -t) 2

where KI(u, t) is a regular function of u, t, and can be expanded in a form suitable for numerical

computation. The details of this expansion is ommitted here. However, this expansion is an important

step in this work.

The hypersingular integral equation (3.4) can be rewritten as

I (u-t) 2 + C(u, t) f(t)dt = 1(u), -1 < U < (3.6)

f(t) = gbo F(t) (3.7)

01

and 1(u) is a known function (it is related to Oo). The equation (3.6) is to be solved subject to the

condition that

f(=1) = 0. (3.8)
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As in [1] f(t) is approximated as

N
f (t) 1-t'2)1/ an U,,(t) (3.9)

n=0

where Un(t) is Chebyshev polynomial of the second kind. and an(n 0, 1, ..N) are unknown complex

constants. Substituting (3.9) into (3.6), we obtain

N

E anAn(u) = 1(u), -1 < U < 1, (3.10)
n=O

where An(u) = -ir(n + 1)Un(u) + j(I - t 2 )/' 2 IC(u, t)Un(t)dt.

To find the unknown constant an(n 0 0, 1, ...N) we put u = uj(j 0, 1, ..N) in the relation (3.10)

to obtain the linear system
N

E an An (uj) =l(uj) j = 0, 1, ... N (3.11)
n=0

The collocation points uj (j = 0, 1, ..N) are chosen as [1]
The reflection and transmission coefficients R and T can be found in terms of a series involving

an by making ý --+ Foo in the expression for ¢(•,) given in (3.1). Expressions for RT involve

certain integrals which can be evaluated numerically for different values of the physical parameters

Ka, h/a, d/a and the angle 0 of inclination of the barrier with the vertical. Thus once the complex

constants a,(n = 0, 1, ..N) are found by solving the linear system (3.11), numerical estimates for [RI

and ITI can be obtained. Also IRI2 + ±TI 2 must be unity from the consideration of energy principle, this

can be used to check the correctness of numerical estimates obtained for JRI and ITI. The amplitudes

of the force and moment (about the origin) per unit width of the barrier can also be estimated

numerically once an (n = 0, 2, ..N) are obtained.

4. Numerical results : The numerical estimates for JRI converges fairly rapidly with N. An

accuracy of almost five decimal places has been achieved by choosing N = 3 or 4. Also the correctness

of the numerical method is checked by estimating JRI for the case of a submerged vertical plate (0 = 00)

and comparing with known results obtained earlier in [3] by eignefunction expansion method. Again,

for 0 = 45 0, a/h = 0.4, d/h = 0.4, JRI and ITI are estimated by the present method, and it has been

verified that JRI2 + ITI2 almost coincide with unity.

JRI is depicted against the wave number Ka in figure 1 taking 0 = 450 for different values of d/h

keeping d/a fixed. It is observed that when the depth of the mid point of the inclined barrier is

one-tenth of the bottom depth (d/h = 0.1), the results almost coincide with deep-water results given

in [1] and shown in the same figure by crosses. The bottom effect appears to be significant in the

low wave number range. This may be attributed due to the fact that in the low wave number range,

the wave length of the incident wave train is large enough to have adequate penetration below the

free surface so as to be affected significantly by the bottom while in the large wave number range the

reverse phenomenon occurs and as such there is no appreciable effect is observed.

In figure 2 JRI depicted against Ka for an almost horizontal barrier by taking 0 = 890. As observed

in [1] for the case of deep water, zero of [RI are seen to occur for the case of finite depth water. The

zeros of JRI begin to appear only when the inclination of the barrier with the vertical is of the order

of 800. This is not shown here. The non-dimensional amplitude of the force and moment(about the
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origin) acting on the barrier per unit width are depicted in figure 3 and 4 respectively. It is observed

from these figures that the amplitudes decrease with the increase of 0. These results are plausible.
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5. Conclusion : Water wave scattering by an inclined barrier plate submerged in finite depth

water is investigated by using a hypersingular integral equation formulation. Numerical estimates for

the reflection coefficient, amplitudes of force and moment acting on the barrier are obtained fairly

accurately and are depicted graphically against the wave number and compared with deep-water

results. Also, some numerical results for an almost horizontal barrier are obtained as special cases,

and these agree with known results obtained by other methods. The technique used here is now

being used to tackle water wave scattering problems involving a curved barrier in the form of an arc

of a circle, ellipse etc. submerged in finite depth water . The method can also be used with some

modification for a surface piercing curved barrier.

This work is partially supported by CSIR, New Delhi.
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1. Introduction

Effects of hydrodynamic interactions among multiple cylinders must be expected not only on the first-order forces
and wave-induced motions but also on higher-order hydrodynamic quantities. The present paper is concerned with
the characteristics of second-order steady forces on each cylinder in a rectangular array composed of many identical
cylinders with equal separation distance.

Recently, Kashiwagi (2000) presented an effective calculation method for the wave drift force on the basis of the
momentum conservation principle. However, this method (referred to as the far-field method) gives only the total
forces in the horizontal plane and the yaw moment on the whole structure.

Meanwhile, the wave drift force can also be computed by integrating the pressure over the wetted surface of a
structure, which enables us to evaluate the local forces on each cylinder. Based on this direct pressure-integration
method, an accurate numerical calculation method is presented in this paper. Validity and numerical accuracy of
the method are confirmed by comparison with the results of the far-field method and experimental results measured
using 64 truncated circular cylinders arranged in 4 rows and 16 columns.

2. Formulation and Second-Order Forces

A column-supported large floating structure is considered, which comprises a thin upper deck and a large number
of identical and equally-spaced buoyancy columns. The elementary column considered here is a truncated circular
cylinder with radius a and draft d. The distance between centerlines of adjacent cylinders is 2s in both x- and y-axes
of a Cartesian coordinate system. The positive z-axis is directed downward, with z = 0 the undisturbed free surface
and z =- h the constant water depth.

The structure is allowed to move with unsteady motions of six degrees of freedom in response to the wave excitation.
The vectors of the translational and rotational motions are denoted by ý(t) and a(t), respectively; the magnitudes
of which are assumed to be small. Under the usual potential-flow assumptions, we introduce the velocity potential,
'5, with which the hydrodynamic pressure can be computed from Bernoulli's equation. Then the wave force on a
body can be obtained by integrating the pressure multiplied by the unit normal vector over the instantaneous body's
wetted surface, say S(t).

Assuming weak nonlinearities, the velocity potential and the motion vectors can be written as a perturbation
series in a small parameter which is usually taken as the wave slope. Furthermore, using Taylor's expansion for the
pressure and unit normal vector on S(t) with respect to the mean body surface, SB, the wave forces on a body can
be expressed also in a perturbation series. Skipping details of the derivation (see Ogilvie (1983) for example), the
calculation formulae for the first-order and second-order forces can be summarized as follows:

F(1 = / 00o• 0•() =

F-(1)= Pf ndS - pgff 3E ~n3 k dS, (1)

(2) = ff a,( 2)n f ±(2)F(2 = dS _ Pgf s(23k dS + F(2)
F~pII- ]IS q(2

where F(2) =p]] IVO(i) 12 ({ 2d

q~ j~ (1Va( )nd S +pg f(i) I
(1) (a0(1)\

Ip/ (% 1ix + Y1) 713k dS. (3)

Here ((') in (3) denotes the first-order relative wave elevation given by

(1 __1(1) ) • = 0 ()

R g a-t 1 (4)
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which must be evaluated along the mean waterline CB; p is the fluid density; g is the gravitational acceleration;
n is the unit normal vector directing into the fluid from the mean body surface SB; E (1) = ý(1) +•(') x r and
thus ="(1) =- ý() + a( )y - a(02)x ; k is the unit vector in the z-direction of the space-fixed coordinate axes. The
corresponding expressions for the moment can be obtained in a similar form.

The present paper is concerned with the second-order steady forces, which can be computed by taking time-average
over one period of F(2) which contains only quadratic products of first-order quantities.

3. Solution of First-Order Problem

The first-order quantities are assumed to be time-harmonic with circular frequency of the incident wave, w, and are
expressed as

(1) _-Re[ Or +Os - K Z Xk(Ok + Wk) (5)
k=1

= ,Re[AXkeiwt a = -Re Axk+3 ew , (6)

where A is the amplitude of the incident wave, K = w 2a/g is the nondimensional wavenumber, and Xj (j = 1 - 6)
is the complex motion amplitude expressed in a nondimensional form.

,1 and Os are the incident-wave and scattering potentials, respectively, and the sum, 01 + Os =_ OD, is referred to
as the diffraction potential. For plane waves propagating in the direction with angle 3 relative to the positive x-axis,
0I is given by

cosh ko (z - h) eiko(x cos.
3

+y sin ) (7)
cosh koh e

where k0 is the solution of the wave dispersion relation, k0 tanh koh = K.
In the radiation problem, Ck in (5) denotes the velocity potential of a single body oscillating in the k-th mode

(with no interactions), and Wk represents the remaining part due to hydrodynanmic interactions with radiated and
scattered waves by the other bodies, which are essentially the same as the scattering problem.

Therefore the boundary conditions to be satisfied on the body surface, SB, are given as
___ &¢k a~

0 =D = 0, !0 = nk, -- = 0, (k = 1 - 6) on S1  (8)
an an

where n = (n 1 , n2, 13) and r x n = (n4, t5, 76).

Solutions satisfying (8) and other free-surface and radiation conditions may be obtained by Kagemoto & Yue's in-
teraction theory (1986). The expressions of the velocity potentials appropriate near the j-th body can be summarized
as follows:

D= 0 + {A%} {. IfT }, (9)

= { } ,Pk- {Aj}k { s}, (10)

where {Aj} in (9) and {Ai} in (10) are unknown coefficient vectors of scattered waves to be determined, and {I I}
is the vector comprised of the progressive and evanescent wave components, which are expressed as

cosh ko(z - h) Hm)(korj) e•moj}
100coshkoh(

cos k.(z - h) Km(knrj) -imSJ

cos k,•h Km(n)e

Here k. (n = 1,2,...) denotes the evanescent-mode wavenumbers satisfying k. tan k~h = -K. The local cylindrical
coordinate system (rj, Oj, z) has been used, with the origin placed at the center of the j-th body. The number of
Fourier series in the 0-direction, m, is taken as 0, ±1, ±2, --..

Once the velocity potentials are determined, it is straightforward to compute the first-order forces, F(1) defined
by (1), on each of the cylinders in the array. The complex amplitude Xk defined in (6) will be determined by solving
the motion equations of the structure consisting of many buoyancy cylinders.

4. Outline of Numerical Computations

As the first step of numerical computations, the first-order boundary-value problems for a single cylinder were solved
by the boundary element method using 9-point quadratic representations for the surface geometry and velocity
potential.

In computing the wave interactions by Kagemoto & Yue's theory, the number of Fourier series in the 0-direction
(M) and of evanescent wave modes (N) were determined to be M = 5 and N = 3 after a convergence check. In
this case, the total unknowns for NB = 64 cylinders are (2M + 1) x (N + 1) x NB = 2816. To enhance numerical
efficiency, the double symmetry relations with respect to the x- and y-axes were exploited, reducing the number of
unknowns to 1/4 (i.e. 2816/4 = 704).
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In computing the second-order steady forces, the spatial derivatives of the velocity potential over the submerged

surface, SB, and the line integral along the waterline, CB, were evaluated using the boundary condition (8) and

quadratic isoparametric representations for the velocity potential and coordinates (x, y, z).

5. Outline of Experiments

A truncated circular cylinder with diameter D (= 2a) = 114 mm was used as an elementary float, and 64 cylinders

were arranged in a rectangular array with 4 rows (in the y-axis) and 16 columns (in the x-axis) with equal separation

distance of 2s = 2D between the centerlines of adjacent cylinders in both x- and y-axes. The draft of cylinders was
set to d = D and 2D, but the results of d = 2D will be mainly shown because there were no essential differences.

Although the effects of wave-induced motions can be taken into account in the calculation method, the motions

of the structure were completely fixed, and the experiments were carried out in head waves (/3 = 00). The wave

forces were measured by dynamometers at 6 different positions; No. 1, No. 9, and No. 15 Columns. (16 columns are

numbered from the upwave side.) By symmetry in head waves, the lines at y = ±D are called the inside and the
lines at y = ±3D are called the outside. Then the positions of measured cylinders are distinguished with the column

number and the inside or outside line. The frequency range in the measurements was Ks (= w2s/g) = 0.2 - 1.6 and

the wave steepness H/A (the ratio of wave height to wave length) was set to approximately 1/50.

6. Results and Discussion

Numerical accuracy of the present method was checked by comparing the sum of the local steady forces on 64 cylinders

with independent results by the far-field method developed by Kashiwagi (2000). Some results are shown in Table 1

for the case of #- = 300, s = D, d = 2D, and h = 7.5 d. In computing the wave-induced motions, the center of gravity
was assumed to be on the water plane, and the radii of gyration in roll, pitch, and yaw modes were set to 0.25B,
0.25L, and 0.25L, respectively, with B and L being the breadth and length of the structure.

Table 1 Steady forces in surge, sway, and yaw on a structure with 64 circular cylinders arranged
periodically in the array of 4 rows and 16 columns, computed by the far-field method and the
pressure integration method. (d = 2D, s = D, h = 7.5 d, 13 = 300)

By Far-Field Method (Momentum-Conservation Principle)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05413 0.00876 0.00412 0.14638 0.01407 -0.10189
1.00 0.08821 0.04253 0.02977 0.08946 0.04258 0.03098
1.50 1.6217 0.08032 -0.00668 1.6218 0.08030 -0.00606
1.75 3.9364 0.27782 0.40703 3.9369 0.27766 0.40795
2.00 3.2052 0.70410 -0.26574 3.2048 0.70387 -0.26517
2.50 0.98615 0.50644 -0.37112 0.98633 0.50677 -0.37146

By Near-Field Method (Direct Pressure Integration)

Diffraction Problem Including Motion Effects
Ks FX FY MZ FX FY MZ

0.50 0.05576 0.00874 0.00343 0.17035 0.01336 -0.10203
1.00 0.08868 0.04209 0.02975 0.08997 0.04213 0.03099
1.50 1.6222 0.08027 -0.00664 1.6223 0.08025 -0.00602
1.75 3.9368 0.27791 0.40708 3.9373 0.27775 0.40799
2.00 3.2056 0.70419 -0.26571 3.2052 0.70396 -0.26513
2.50 0.98646 0.50627 -0.37130 0.98664 0.50661 -0.37164

We can see from Table 1 that very good agreement exists between the far-field method and the present pressure-
integration method. For higher frequencies, the steady surge (FX) and sway (FY) forces and steady yaw moment
(MZ) were dominated by the diffraction component, because the structure considered here is large in size compared

to the wavelength of the incident wave and thus the wave-induced motions are relatively small.

Computed local steady forces acting on elementary cylinders are shown from Fig. 1 through Fig. 6 together with

measured results. From these figures we can observe the followings:

1) At the upwave side (Column No. 1), variation of the steady force is rapid in the frequency range lower than the
near trapped-mode frequency (Ks ý- 1.24 in the present case), but this variation becomes mild as the position

of the cylinder concerned goes downstream.

2) For frequencies higher than Ks = 1.24, the local steady forces on upwave cylinders become positive and large,
dominating the total drift force on the structure.

3) The steady force on a cylinder along the inside line in the array is larger than that on a cylinder along the

outside line in the variation amplitude with respect to the frequency.

4) Computed results by the present method are in good agreement with measured results, except for the very
narrow frequency range just below the near trapped-mode frequency.
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REDUCTION OF HYDROELASTIC RESPONSE OF
FLOATING PLATFORM IN WAVES

T.I. Khabakhpasheva and A.A. Korobkin
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1. Introduction
A very large floating structures are considered as an alternative of such land-based large facilities as, for

example, airport. A proposed design of floating airport has a thin plate configuration of large horizontal
extend. Bending rigidity of such a floating plate is small, and wave-induced motion of the plate is significantly
affected by its elastic deflection. Analysis of floating plate behaviour in waves is based on hydroelasticity,
in which the coupled hydrodynamics and structural dynamics problems are solved simultaneously. A goal
of the analysis is to predict accurately both the plate deflection and stresses in the plate and to find a way
for their reduction. The latter is of great importance for securing safety and the structure performance.
Reduction of the motion of an floating elastic plate in waves by surrounding it by an breakwater was studied
numerically in [1,2]. It was shown that breakwaters effectively reduce the plate response for long waves
but in the case of short waves the reduction is not well-pronounced. The idea to put a floating structure
in the shadow of a breakwater for reduction of the structure response is clear and practical. However, the
behaviour of a structure in restricted water might be affected by its hydrodynamic interaction with the
breakwater and resonance phenomena might occur. Another way to reduce the floating plate response was
suggested in [6] that is to adjust to the front side of the elastic plate a wave reflector - vertical submerged
plate, the height of which is about three times less than the water depth - or a wave-breaking structure -
multi-column floating structure of small extend. Experiments [6] revealed that both the wave reflector and
the wave-breaking structure decrease deflections of the main structure in the case of short incident waves.
However, for long incident waves which provide greater deflections of the main structure than short waves,
the experiments did not detect well-pronounced effects of the additional structures. Both approaches [2,6]
are based on the idea to protect (to shield) a floating elastic structure from the incident wave action, in
order to reduce a part of the wave energy which can be absorbed by the structure.

In order to test possible approaches aimed to reduce floating plate response in waves, direct numerical
simulations of hydroelastic behaviour of the plate are very attractive. Three-dimensional numerical simu-
lation of the linear response of an elastic plate in waves is the most accurate approach. Three-dimensional
numerical simulations of floating rectangular plate in waves were performed in [3,4]. However, at present
these simulations are still time-consuming and expensive to use them at the design stage. At the very initial
stage of design it looks reasonable to use the simplest models of floating plate behaviour, in order to discover
main trends and to distinguish main features of the problem. If an effect is well-pronounced within a simple
model, it is expected to be of importance also within more accurate models.

In this paper two approaches to reduce elastic deflection of floating plates are described within the two-
dimensional linear theory. In the two-dimensional problem the plate is modeled by an Euler homogeneous
beam. Developed method is applied also to the problem of cracked floating beam. The first approach is
based on the concept of vibration absorber well-known in many engineering applications. Within the second
approach the floating beam is connected to the sea bottom with a spring, rigidity of which can be adjusted
in such a way that the beam deflection due to incident waves is reduced.

Four 2D-problems on hydroelastic behaviour of a floating beam in waves are considered, where the beam
is (i) homogeneous, (ii) cracked, (iii) compound with an elastic connection between the parts of the beam,
(iv) homogeneous and elastically connected to the sea bottom. The problems are treated by the common
method described below. The formulation is given for the third problem on compound beam behaviour,
which is the most general one. The scheme of the flow and the main notations are given in the figure

""o

..L I......... .. ..

2. Formulation of the problem
The plane linear problem of a floating beam in waves is considered. The beam vibration is caused by

periodic incident wave of frequency w and small amplitude A. The beam consist of two parts (see figure)
with their bending stiffnesses EiJi and drafts di (i=1,2) being prescribed. The beam drafts are assumed
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much smaller than both the total beam length 2L and the liquid depth H. We shall determine the beam
deflection and the stress distribution in the beams and study their dependence on characteristics of the beam
parts and conditions of their connection.

Non-dimensional variables are used below: L is taken as the length scale, 1/w as the time scale, the
amplitude of the incident wave A as the deflection scale, the product pgA, where p is the liquid density
and g is the acceleration due to gravity, as the pressure scale, 2Ldpg as the scale of bending stresses, and
the product AwL as the scale of the velocity potential. Within the linear wave theory the non-dimensional
hydrodynamic pressure p(x, 0, t) along the beam , -1 < x < 1, and the beam deflection w(x, t) are given as
p(x, 0, t) = R[e"P(x)] and w(x, t) = R[eitW(x)], respectively. The new unknown complex-valued functions
P(x) and W(x) satisfy the following equations and the boundary conditions:

P(X) + - P(xo)K(x - xo)dxo = eikx - W(x), (1)

p3(x)W'V - a(x)W = P(x) (-1 < x < 1), (2)

W"(+1) = 0, W'"(-1) = 0, W`'(+1) = -kW(+l), (3)

W(l - 0) = W(l + 0), '31 W"(1 - 0) = 0 2 W"(I + 0), 131 W.'(l - 0) =0 2 W'( (1+ 0), (4)

W"(1 - 0) + kT[W'(l - 0) - W'(1 + 0)] = 0, (5)

where a ,o for x c [-1,), /1 forxc [-1,1),
a2 for x (1, 1], O3(x)= /52 forx G (1, 1].

The problem (1) - (5) contains eight parameters:

k1 = K 1L
3 /E 1J 1 , kT = KTL/ElJl, -y = Lw2 /g, aj = 7di/L, /3j = EjJj/(pgL4 ), (j = 1, 2)

and k which is the positive solution of the dispersion equation k tanh(kHo) = 7, Ho = H/L. The function
K(z) in (1) is given as

K(z) = -2iri ke-iklzl + 27r 0 sje-S iyl2K~) 2Ho(kI - - /) + -ý E H0(sý + 72) -y7'

where sj = (r-i - Sj)/Ho and 5j is the solution of the equation 5j = arctan(-yHo/(irj - Sj)), j > 1.
The boundary-value problem (1)-(5) describes the hydroelastic behaviour of a free-free homogeneous

beam in waves with a, = a2, 01 =/32, k, = 0 and kT = 00, of a free-free cracked beam with a0 = a2, '31 =

132, kI = 0 and kT > 0, of a free-free compound beam with a0 # 02. 
13 1 # /32, kI = 0 and kT > 0, and of an

homogeneous beam connected elastically to the sea bottom, with 01 = a2, 0 1 
= /32, kI 0 0 and kT = 00.

3. Method of solution
Problem (1) - (5) can be solved with the help of the normal mode method in the same manner as in [7].

This method reduces the integral equation (1) to infinite system of algebraic equations with respect to the
principle coordinates of the pressure P(x). However, the eigenfunctions of the compound beam are rather
complicated and, moreover, they do not correspond to the features of the hydrodynamic pressure distribution
along the beam. A main idea of the present study is to use different basic functions for the pressure and the
beam deflection. Trigonometric functions are used as basic functions to present the pressure in the form

P(X) = + ac, cos rrnx + ± as, sin 7rnx. (6)
n=1 n~l

Substitution of expansion (6) into equation (2) leads to the following expansion for the beam deflection

1 00 00

W(x) = -aowco(x) +-Z acnWCn(X) + E asnwsn(X)" (7)

n=l n=1
The functions wcj(x) and wsj(x) satisfy conditions (3)-(5) and equation (2) with P(x) being replaced by
cos(jwrx) and sin(jwrx), respectively. The functions wcj (x) and wsj (x) are considered here as basic functions
for the beam deflection. The integral equation (1) with account for expansions (6) and (7) leads to the
infinite system of algebraic equations with respect to the coefficients acc and as,.

(I + -S +A) i= e. (8)

Here I = diag(2, 1, 1, ... ) is diagonal matrix, symmetric matrix S comes from the integral term in (1),
symmetric matrix A comes from the term W(x), and d = (aco/2, acl, ac2 , ...ac0 , as1 , as 2, ... as, )T. The
elements of the vector ( are the coefficients in the expansion of exp(ikx) with respect to the trigonometric
functions. All elements of the matrices S and A and those of the vector 6 are given by analytical formulae.

4. Free-free homogeneous beam
Problem (1) - (3) with a1 = a2, 31 =132 and k, = 0 corresponds to that of hydroelastic behaviour of the

homogeneous free-free beam in waves and was studied in [5] by the domain decomposition method, in [7] by
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the normal mode method and in [8] with the help of a combination of these methods. The obtained numerical
results are in good agreement for low frequencies of incident waves but differ each other for high frequencies.
The problem of high-frequency excitation of floating elastic plates is not solved yet. The low-frequency case
is considered here only.

Numerical calculations were performed for the conditions of the experiments carried out by Wu et al
[8] for homogeneous narrow plate in a channel: d =8.36mm, H =1.lm, h =38mm, EJ =471kg m3/S2,
L =5m. The frequency of incident wave is equal to 4.4s-1 (period of the wave T = 1.429s) and 2.2s-1
(period of the wave T = 2.875s). In this cases 3 = 7.7 • 10- 5,a = 0.016 and a = 0.004, 7, = 9.85 and
"y = 2.43, k = 10.1 and k = 3.654, respectively, depending on the incident wave frequency. Convergence
of the numerical algorithm was checked by changing the number of terms taken into account in each sum
of (6) and (7). Ninety terms were used to plot the obtained numerical results. The present results for the
homogeneous beam, are identical with those obtained in [5,7,8] by other methods. The amplitude of the
beam deflection IW(x)I is shown below only for T - 1.429s.

5. Free-free compound beam
The linear problem of two floating beams is considered. The beams are connected with the help of a

torsional spring. Vibrations of the beams are caused by periodic incident wave of small amplitude. The
longer beam is referred to as the main structure, characteristics of which are prescribed. The shorter beam
is referred to as the auxiliary plate, length of which is given. Both characteristics of the auxiliary plate
and the torsional spring stiffness which essentially reduce the vibration amplitude of the main structure are
determined. The auxiliary plate can be adjacent either in front of the structure (case a) or at the rear side
of it (case b).

(a) 1 1t ' ' /

(b) IW0.5 32

0
-1.5 -1 -0.5 0 0.5 1 x 1.5

Calculations were performed for the conditions of experiments [8] for main plate. Period of the incident
wave is equal to 1.429s (line 1 is for a single plate, line 2 is for case a, line 3 is for case b, length of the
auxiliary plate is equal to 0.25 of the main plate length, (EJ),.... = 100(EJ)mnai,,). It was revealed that:
"* auxiliary plates adjacent in front of the main structure (case a) decrease the structure vibrations;
"* vibrations of the main structure are increased with auxiliary plates attached to its rear side (case b);
"* reduction of the vibration is strongest if the plates are simply connected (kT = 0);
"* auxiliary plate of length 1.5m decrease the deflections by 20% (case a) and increase them by 10% (case b);
"* essential reduction (35%) of the structure vibrations was obtained in the case of rigid auxiliary plates of
length 2.5m simply connected in front of the main structure.

Roughly speaking, in order to reduce the floating plate vibrations, a rigid plate of smaller length has to
be simply connected in front of the main structure.

6. Free-free cracked beam
In order to model the cracked beam problem, the method of matched asymptotic expansions is used.

According to this method, the beam is divided into the 'inner' region which surrounds the crack, and the
'outer' region, where the transverse variation of the stresses is not important and the plate is modeled by
an elementary homogeneous beam. In the leading order as h/L - 0, reduction in stiffness of the beam due
to the presence of a crack is modeled with the help of a torsional spring (see figure).

¢, oIW W I 2

hý 0.5

-a - 0
- 1 -0.5 0 0.5 x 1

The equivalent torsional spring stiffness KT for a single-sided crack is assumed known as a function of the
beam parameters and the crack length a. The 'outer' solution for the floating free-free beam which is divided
by the torsional spring into two parts, provides the bending stresses outside the crack region. Therefore the
'outer' solution is described by the problem considered in Section 5, where aI = a2, 01 = /32, ki = 0, kT > 0.
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As a result of numerical calculations, the distribution of beam deflections and bending moments were
obtained outside the crack region for different positions of the crack and its length. Analysis of numerical
calculations gives:
* Presence of a crack changes the distributions of both the plate deflections and stresses, if the crack is longer
than a half of the plate thickness. The longer the crack, the more pronounced are the changes.
"* Local maximum of the deflections and local minimum of the bending stresses occur at the crack position.
"* These changes are much more pronounced if a crack is located at the points of maximum bending stresses
of the equivalent homogeneous plate.

Calculations were performed for the conditions of the experiments [8]. The results are depicted for
homogeneous beam (a = 0, curve 1), broken beam (a = h, 1 = -0.3, curve 2) and cracked beam (a/h =
0.8, 1 = -0.3, curve 3). It is seen that the presence of the crack increases locally the deflections but decreases
the stresses in the beam. The 'outer' solution gives necessary data to evaluate the stress intensity factor at
the crack tip and to predict the evolution of the crack length in time.

7. Floating beam with its edge being elastically connected to the sea bottom
Numerical solution of problem (1)-(5) with a, = a 2 , 01 = ,2, kT = oo and k, > 0 revealed that elastic

connection of the front edge of the floating beam to the bottom can essentially reduce the beam deflections
in the main part of the beam. Rigidity of the elastic connector can be adjusted in an optimal way for a
given frequency of incident wave.

IW(x)i 1

0.5
3 2

0
-1 -0.5 0 0.5 x I

In the figure the amplitudes of the beam deflections are shown for the free-free beam (k, = 0, curve 1)
and for elastically connected beam (k, = 1000, curve 2 and ki = 700, curve 3). Parameters of numerical
calculations are given in Section 4, T 1.429s. The curve with ki = 1300, is similar to the curve with
k, = 700. It is seen that the dimensional rigidity of the elastic connector K1 ; 3800kg/s 2 can be considered
as optimal for the conditions of experiment [8]. For another frequency of incident wave the connector rigidity
has to be changed, which can be done with an active control system.

8. Conclusion
The method of numerical solution of the floating beam problem is based on expansions of the hydrody-

namic pressure and the beam deflection with respect to different basic functions. This makes it possible to
simplify the treatment of the hydrodynamic part of the problem and at the same time to satisfy accurately
the beam boundary conditions. Two approaches aimed to reduce the beam vibrations are described. The
effect of the vibration reduction is well pronounced and can be utilized at the design stage. Combination of
the presented approaches is expected to be perspective.

This work was supported by the RFBR (projects NOO-01-00842, NOO-01-00850 and NOO-15-96162) and
SB RAS (integration grant Ni).
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1. INTRODUCTION

The hydroelastic analysis of the floating runway has usually been made under the assumption that the structural
properties, such as mass and stiffness, are uniform over the runway (see, Mamidipudi & Webster, 1994; Newman, 1996;
Kashiwagi, 1998; Ertekin & Kim, 1999). Recently, Webster (1998) proposed an optimization scheme to minimize the
cost of the floating runway by re-distributing the mass and stiffness of the runway. In this scheme, the hydroelastic
response of the runway for a given wave spectrum should be evaluated at each stage of the optimization process. An
efficient numerical method is necessary to reach to the optimal design within reasonable computing time and cost.

In this paper we present a numerical method to obtain hydroelastic response of inhomogeneous runway in waves.
The runway is modeled as an orthotropic plate following Mamidipudi & Webster (1994) and the fluid is modeled by
Green-Naghdi theory as has been done previously by Ertekin & Kim (1999). The finite-difference method is used to
discretize the governing equations of the plate and fluid in the runway region. The flow in the fluid domain outside the
runway is solved by the use of Green's function, to obtain radiation condition for the fluid under the runway.
Preliminary numerical results are presented by applying the present numerical scheme to a runway with the stiffness
varying transversely.

2. FORMULATION

Runway structure

Following Mamidipudi & Webster (1994), the floating runway is modeled as an orthotropic plate with variable mass
and stiffness. The vertical deflection ý(x, y) of the runway of length L and width B is governed by

(02pp,(xy)+Dx(x,y)L4. +2H(xy) a Dxy +D4(x,y)2 -4=Pb(x,y), (1)

ax 2 xcy 2 " y4

where Dx (x, y), Dy (x, y) and H(x, y) are the bending and the torsional rigidities, pp (x, y) is the mass per unit area,

and Pb (x, y) is the pressure at the bottom of the runway. Along the edges of the runway and comers, additional
conditions are imposed to make sure that the runway is 'free'. Details of the conditions can be found in Webster (1998).
The pressure at the bottom of the runway should be equal to the pressure at the upper surface of the fluid, which will be
given later in the formulation of the fluid.

Fluid layer under the runway

We adopted the Green-Naghdi equations following Ertekin and Kim (1999) to model the fluid underneath. The
equations can be written in terms of the depth-integrated potential t(x, y) from which the velocity field of the fluid is
defined by

u(x,y)= V0, w(x, y, z)=-(z+h )V2 (2)

where h is the water depth. The conservation of mass is stated as

hV20-_ioel=O (3)
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where hI = h - d is the clearance between the runway and the sea bottom. The equation for conservation of momentum

can be integrated as

Pf = i0)P +(02 ph, pg (4)

where pf = pf (x, y) is the pressure at the upper surface of the fluid, which should be equal to Pb (x, y) in Eq.(]).

Fluid layer outside the runway

In the outer region where there is no runway on the top of the fluid layer, the Green-Naghdi equation reduces to a

simple Helmholtz equation (see, Ertekin & Kim, 1999). The general solution of the Helmholtz equation in the outer

domain can be represented as the plane wave plus the line integral along the edge of the runway by Green's identity. A

radiation condition for 0(x, y) along the edge can be derived by enforcing the continuity of the mass and energy flux

across the edge (Bai et al, 2000). The radiation condition can be written as

0=1 iH,1)(kx.(s< 2L 2-ds+4o (5)

where x = (x, y) is the field point and 4(s) is the source point on J, H () is the Hankel function of the first kind. The
wave number, k , is given by the dispersion relation of the Green-Naghdi equation as,

k 2 - 2 0)2.= 3ghk2
________or 22 22 (6)

3gh-h2(02 3+h2ka

3. NUMERICAL METHOD

Webster (1998) derived the finite-difference formula for the structural equation using the fifth-order polynomial
interpolation. On the edge panels, special formulas have been derived to satisfy the free edge conditions. In this study,
we use the same formula for every panel by introducing additional exterior panels along the peripheral of the runway.
Satisfying edge conditions can eliminate the extra unknowns due to these panels. Similarily, the Laplacian operator in
the fluid equation in Eq. (3) is also discretized by finite difference formula with additional strip of panels along the
peripheral. Imposing the radiation condition, Eq. (5), eliminates the extra unknowns. The discretized equations can be
given as

S0 +SB -(0 2M+pgl - i)pI +1R [0 (7)
R iol -h1 L0 +LR f. (7

where So is the stiffness matrix and SB is the correction due to the edge conditions, M is the virtual mass matrix that
includes the inertia due to mass of the plate and the added mass term, ph1 /3, given in Eq. (3). The matrix Lois due to
the Laplacian operator in Eq. (3) and L R is contribution by the radiation condition, Eq. (5). The forcing vector fw is due
to the forcing by incident wave. Note that the matrices that appear in Eq. (7) are sparse, except SB and LR, which are
dense for the unknowns along the edge of the plate.

We tried both iterative and direct scheme to solve the algebraic equation, Eq. (7). As an iterative scheme, we tried a
PFFT method. The preconditioning is made by the FFT solution of the infinitely wide floating plate with uniform
stiffness and mass distribution. The stiffness and mass of the uniform system are given by the averaging the original
system to solve. Numerical test showed that this iterative scheme was successful only when the structural properties of
the runway is close to uniform. Otherwise the convergence was quite slow and even non-convergent when the non-
uniformity was severe.
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As the second approach, we tried direct scheme after eliminating ý from Eq. (7):

(622I + LS) = -iowf. (8)

where S=(SO+SBB -co2M+pgI)/p and L =-hlL0 +LR. The matrix LSis still sparse at the internal panels. It is
dense only on the three lanes of the panel strips from the edge. Sparse solver has been used to save the computer
memory and CPU time.

4. RESULTS

As a numerical example, an isotropic plate with the stiffness varying in y-direction is studied. The bending and torsional
rigidity is given by

2Bt

The dimensions and the structural properties of the runway are given by

L=5km, B=lkm, d=5m, h=50m, D 0 =l.96x10" N-m, v=0.3.

In Fig 1., the deflections at four different incident wave angle, P3, which is defined as the angle between x-axis and the

wave angle, are compared for three different value of r (see Eq. (9)): F = -0.5, 0 and 0.5. The deflections are

normalized by the amplitude of incoming wave, A. The incoming wavelength is 125 m orL/X = 20. Total 150 by 30

panels are used to discretize the runway.

In the head sea, the runway with the centerline stiffened (E = 0.5) has a calmer runway surface. The runway with edges
stiffened has undulations of greater height along the center of the runway, presumably because the transmitted waves
are guided by the stiffened edges and not radiate to the water outside. On the other hand, in the oblique and beam seas,
the runway with the stiffened edges is more calm.
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1. INTRODUCTION

Ships with liquid cargo experience the slosh-induced internal loads during their operation. In some ships like LNG
carriers, the impulsive local load is a major concern for safe structural design, whereas the global forces and moments are
of interest in some types of ships. Although the ship motion excites the sloshing flow, the sloshing flow also affects the
ship motion in return. Sometimes these slosh-induced forces and moments are significant, so that the coupling effect is
critical in the prediction of seakeeping performance for such cases. The anti-rolling tank (ART) is a good example which
utilizes this coupling effect. Moreover, the coupling effect between the motion response and fluid flow on deck plays a key
role in the dynamic instability problem of small fishing vessels.

This study concentrates on the coupling problem of the ship motions and sloshing flows. In order to solve the coupling
problem, two distinct problems - ship motion and sloshing - should be solved at the same time. Generally, the sloshing
phenomena in the tank or the deck are strongly nonlinear, so that the time-domain approach seems the right way to tackle.
In this study, the finite difference method has been applied to solve the sloshing problem. Particularly, this study adopts the
same scheme with [1] and [2]. For the ship motion problem, the Large Amplitude Motion Program (LAMP) has been used.
Two programs have been combined, so that the slosh-induced moment affects the ship motion in waves, and vice versa.
The test models are a modified S175 hull equipped with rectangular anti-rolling tanks of passive type and a VLCC with

17 oil tanks. The computational results for the anti-rolling tanks have been compared with experimental data for a supply
vessel with the same beam-length and draft-length ratios. The present method is directly applicable to the design of ARTs
and sloshing analysis in LNG carriers and FPSOs.

2. BACKGROUND

Consider a freely floating ship equipped with a partially-filled tank. Two Cartesian coordinate systems are defined at the
center of ship motion and the tank bottom, as shown in Figure 1. The ship is in the 6-D.O.F. motion which is excited by the
incident wave and also the internal forces and moments due to sloshing. The equation of the ship motion can be written as
follows:

[M ij ]At [BElff• + [Ciij ] F,=Fe,(t) + FIosh t) (1)

w here ý is the displacem ent of ship m otion and [M ij], ------------ - - - - - - - ------

[Bij] and [Cij] represent the matrices of mass, damping .. " ..-
and restoring coefficients. The external excitation force Z

vector &J (t) includes all the forces on the external hull
surface by incident waves and hydrodynamic reactions.

Moreover, FIosh (t), the slosh-induced component, '.s

contributes to the excitation. In the present study, the -- ""
ship motion problem has been considered in the realm of ..-.-----
linear theory. Therefore, the linear surface conditions as Figure 1. Coordinate system
well as the body boundary condition have been
considered in the boundary value problem for the ship motion.

The continuity and Euler equations are assumed to govern the fluid flow inside of the tank:
V.a=O and + - lV+- (2)

S~p

where i (u, v, w) is the velocity vector, defined in the tank-fixed coordinate. Moreover, p, p and j are the liquid density,
pressure and external force vectors, respectively. The external force consists of the gravitational force, translational and
rotational inertia forces, which can be written as

f 1[T(454)3.( an - d2 -,2,3 G (3)
= ' g d? dt dt
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where k, &,2,3 and • are the gravitational force vector, the translational motion vectors (,ý2,43) and rotational velocity

vectors 444) of the ship motion. [T] is the transform matrix from ship-fixed coordinate to tank-fixed coordinate. In

addition, rG is the position vector of the considered point from G. On the free surface, both the kinematic and dynamic
conditions should be satisfied.

ao•+•v71=o and P=Pt=,, (4)

a t

where r7 indicates the free surface profile and Pa,, is the air pressure inside of the tank. In addition, a proper wall condition
is necessary on the tank walls and internal members. Then the slosh-induced forces and moments on the tank can be
obtained by integrating the pressure on the tank surface S,,,ak.

&moh~t W .F~P(XiJ (5)

where i is the normal vector on the surface.
The ship motion has been solved using a three-dimensional panel method. Particularly, the Large Amplitude Motion

Program (LAMP) program has been used for the time-domain solution. In this computation, the Rankine source has been
distributed on the hull surface and local free surface near the body, and the transient wave Green function has been
distributed on the matching surface for the radiation condition. The detailed numerical scheme for this mixed-singularity
can be found in [3].

The sloshing flow has been solved using the finite difference method described in [2] without viscosity. The key concept
of this method is to predict the global fluid motion, and hence some local phenomena have been ignored. This numerical
method adopts the SOLA scheme in the fluid domain and SURF scheme for the free surface conditions. The impact
pressure on the tank top is also predictable using the scheme introduced in [1] and [2].

3. COMPUTATIONAL RESULTS

The numerical tests have been carried out two models, a modified S 175 hull and a VLCC with 17 oil cargo holds. Figure
2 shows the hull form equipped with an ART. The beam(B)-length(L) and draft-length ratios are 0.288 and 0.084,
respectively. Bai [4] has reported the experimental data for a supply vessel with the same length characteristics, although
the hull forms are not the same. In his experiment, two types of ART, with and without pillars, have been considered. The
present computation has been applied for the same size of ART, and its lengths are shown in Figure 3. In this experiment,

the five circular pillars have been equipped as shown in
the left figure, while the flat plates have been considered
in the numerical computation. Only the beam sea
condition has been considered for this ship, since the roll
motion is of major interest. The linear damping
coefficient has been applied for roll motion, and 2.5% of
the critical damping has been used in all computation.

The essence of ART design is to tune the ship motion
and sloshing flows. That is, the natural frequency of
sloshing mode should be well tuned with that of roll
motion. Figure 4 shows the time-histories of the wave-

induced moment, slosh-induced moment and the resultant
Figure 2. Modified S175 hull equipped with an ART roll response. In this case, the filling ratio is 50%. At this

filling condition, the natural frequency of fundamental
0.2878 L sloshing mode is close to that of the roll motion.

From this figure, it can be observed that the phase
1,difference of the wave excitation and slosh-induced

moment is close to 180 degrees, resulting in the
0,575,L ,cancellation of the total roll moment. Therefore, it is

I 0.05756L obvious that the ART can provide a significant
(. reduction of roll amplitude.

Figure 5 shows the instantaneous ship positions at
three time steps with and without ART for the same

Figure 3. Characteristic lengths of ART with pillars; wave condition to Figure 4. As expected, the
experimental (left) and computation (right) reduction of the roll motion is very significant.

Therefore, a dramatic change of the roll amplitude
can be expected when the tuning of two frequencies is successful.

Figure 6 shows the roll RAOs for two ships, the modified S 175 hull for the present computation and the supply vessel that
was tested by Bai. Since the hull forms of two ships are not the same, the RAO curves should be compared for not
quantities but trend. The RAO curves for the cases with ARTs show a dramatic reduction near the roll natural frequencies,
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but the roll motion can be larger than the case
without an ART at out-of-resonance frequencies. 0.004 3

This is because the phase difference of the slosh-
induced and wave-induced moments is no longer
close to 180 degrees, so that the slosh-induced 0o20 "/ " " "
moment can increase the total roll excitation. <' , ,\\ i/" •, '
From this comparison, we can conclude that the 0 , P ,
present numerical method provides the correct \ , \ , \ o

solution of the coupling problem. r . ''1
The reduction of the roll amplitude using an ART -0.002 ',

depends on the wave condition. In the realm ofswave-induced momentm- -2
slosh-induced momentroll motion

linear theory, the wave-induced excitation is .0 r0l mot3

linearly proportional to the wave amplitude. 35t40/2 45 so2

However, the slosh-induced moment varies with a Figure 4. Time-histories of the wave-induced and slosh-induced
nonlinear manner ([5]). Furthermore, in the
random ocean, an ART does not guarantee the roll moments; ART without pillars, oL/-g-= 1.5, A/L=0.005
dramatic reduction as seen in Figure 5. A good
survey about the efficiency of ARTs can be found in [6).

(a) without ART

t g1L =22.8 t-g1L 23.8 t-glL = 24.8

(b) with ART (with pillars)

Figure 5. Instantaneous ship positions and sloshing flows at three time steps; oL/g = 1.5, A/L=0.05, 50% filling

20 202w/o ART 20 wlo ART
-- - w/ART - smooth tank - a- - w/ART - smooth tank

- -0- - w/ART - with pillar - -- - w/ART - with pillar

15 15

10 -10 '
5 ! /

11.5 - 2' 2. W6 0.8 1 1.2 1.4
co(L/g)"' (1)

(a) Computational result for modified S 175 hull (b) Experimental result for the supply vessel
Figure 6. Motion RAOs of two ships, AIL=0.005
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The present method can also be applied to a cargo ship with liquid holds. Figure 7 shows the hull profile (half) and cargo
holds for a real ship application. This ship is a typical VLCC of 320-meter long and has 17 oil tanks. Zero speed has been
applied, so this ship can be considered as a FPSO also. The center tanks have transverse webs and the wing tanks have

NJ

,~/

Figure 7. Ship and tank for a real ship computation; 300K VLCC

large swash bulkheads at the tank center. In
this computation, the random incident waves
were applied to excite the freely floating
body with zero speed. The modal wave
period was 15.0 seconds and significant wave
"height was 7.5 meters. The filling ratio was
fixed to 80% for most tanks. Figure 8 shows
an instantaneous snapshot of the liquid

/ profiles inside of the tanks. The
corresponding motion histories are in Figure
9. The difference between two motion signals

0 : is significant, therefore the coupling effects

/ J I may play an important role in ships with
liquid cargo.
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Wave interactions in the coastal zone
Gert Klopman1 and Maarten W. Dingemans2

1. Introduction. In the coastal zone free-surface waves are often quite non-linear, due to shoaling from
deeper water where they have been generated by wind or other means. To understand and predict the further

evolution in the coastal zone wave-interaction processes are studied by several means. The results of such studies

may be applicable to spectral wave models like WAM (e.g. see Komen et al., 1994) and SWAN (Booij et al.,
1999), as well as to the drift motion of ships moored in shallow water.

2. Cumulant-closure approaches. In the coastal zone we usually have water of restricted depth, for
which case Boussinesq-like equations form an adequate description, e.g. Dingemans (1997). For simplicity of

the discussion we now treat only ID horizontal wave propagation in this section. Examples of this approach
have been given, amongst others, by Rasmussen (1998) and by Becq-Girard et al. (1999). Also approaches
based on the Laplace equations are followed, e.g. Eldeberky and Madsen (1999). See also Dingemans (2000) for

a discussion on the above models. Starting with the Boussinesq-like equations given by Madsen and Sorensen

(1993) for a slowly-varying bottom formulated in the free-surface elevation ((x, t) and the vertically integrated
velocity q = f dz u(x, z, t). The Fourier expansions of ( and q are written as:

(2.1) q(X t)) s Wm Am(/3Ox) exp [i (w.-mt - .m(x))]q(x, t) E=• knx

where km, Oom/aX and 03 < 1 denotes the slow variation of the amplitudes. Inserting these series in the
Boussinesq-like equations and keeping only the lowest-order terms in 3 leads to an amplitude equation of the
following form

ýdAql A dh0'
(2.2) - dx ikq(X)) A' + i __ Jm,q-mAm A' ...

where A' = Aq exp [-iq (x)] and the linear shoaling coefficient eTq and the interaction coefficient Jm,q-, are
long expressions, independent of the bottom slope. Notice that reflection has been neglected.

To obtain a model in terms of the (discrete) variance (power spectrum) Eq = (AqA'* ) the evolution equation
(2.2) is multiplied with A'*; the conjugate evolution equation is multiplied with Atq and the averaged. Both
contributions are added and of the results the ensemble average is taken. The result is an evolution equation
for the discrete spectral values:

(2.3) dE- 2q 2UqEq-2EJmqrmIfn{Bmqm} I
-00

where the bi-spectrum is defined by Bm,q-m = (Al AnA t*
In the same way an evolution equation for the bi-spectrum can be derived (e.g, see Rasmussen, 1998):

dx q -m + crq) dx - i~k(x) Bm,q-m

(2.4) +i Z (Jnm-.Tnm-..,q--m,-q + Jn,q-m-nTn,q-m-n,m,-q - gn,q-nT-,..q,n,q-m) I

-00

where 6k(x) = km(x) + kq-m(X) - kq(x) is the wave-number mismatch, and Tn.,mnq--m,-q is the discrete
tri-spectrum defined as Tnm.nq-m,-q -- (A ' A '_•_Aq- )

3. Closure hypotheses. Some closure is needed now because the tri-spectrum is in principle unknown.
What is usually done is to assume the wave field to be Gaussian, which allows one to discard the fourth-
order cumulant. An n-th order moment of random quantities al ... a, can be reduced to a sum of products of

lower-order moments, plus a irreducible term, the n-th order cumulant:

n-1

(3.1) (al ... a.) = E (al ... aj) (aj+l ... a.) + (al ... a.) C
j=1

1Albatros Flow Research, The Netherlands, email: Gert.Klopman afr.nl
2
WLIDelft Hydraulics, The Netherlands, email: Maarten.DingemansOwldelft.nl
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For a discussion of cumulants1 for both random variables and random fields is referred to Monin and Yaglom
(1975, pp. 223 ff.) or to Kendall and Stuart (1977, Chapter 3).

When also near-stationarity is assumed and when shallow-water wave approximations are used to simplify
the coefficients, the following evolution equation for the bi-spectrum results (i.e. see Rasmussen 2, 1998, Eqs.
(9.20) and (9.21)):

(3.2a)d qd Eq - 2 Jm,q-mIm {Bm,q-m} ,

and
dBm,q-m [ dh1

dx -(am + %q-m + aq) - _ i~k(x) Bm,q-m

(3.2b) + 2 iJm,q-m (k#,EEqm + k-- EqEm - L2.EmE,_m)

( kqkq kq m

For use in wave models like WAM and SWAN it is advantageous to decouple these equations.However, this can
only be done in a very approximate way and the resulting spectral energy evolution equation gives no evolution
in case of a horizontal bottom. The fourth-order cumulant discard hypothesis has been used extensively, see,
e.g. Rasmussen (1998) and Eldeberky and Madsen (1999).

In turbulence research it is well known that the fourth-order cumulant discard hypothesis (also known as
the Millionschikov hypothesis, see, e.g., Monin and Yaglom, 1975, p. 241 and §19.3). Applying this hypothesis
leads to an evolution equation for the energy which leads to negative energies eventually because of the viscous
damping. In water waves a similar damping is present because usually a cut-off frequency is used and increasingly
shorter waves come in the region beyond the cut-off frequency and lead to a form of damping. The inconsistency
in using the Gaussianity assumption can be made clear in the following way. The energy density evolution
equation shows the generation of bound waves. With the presence of bound and free waves in the wave field, it
cannot be true anymore that the totality of the wave field remains Gaussian (or, otherwise stated, uncoupled
and therefore linear). Janssen (1991) shows that it is a necessity for having transfer of energy over the various
components of the spectrum to have the fourth-order cumulant to be different from zero. He therefore takes
the sixth-order cumulant to be zero.

A different, but related view has been given by Holloway (1980). Instead of taking the n-th order cumulant
to be zero, (al... = 0, Holloway (1980) substitutes for the n-th order cumulant a term linear in the
(n - 1)-th cumulant (al ... a,-Ic with a fore-factor which is an unknown function of lower-order cumulants.
Effectively what is happening is that instead of supposing the fourth-order cumulant to be zero, the difference
between the fourth-order cumulant and some linear functional of the triple correlation is supposed to be zero.
Following Holloway (1980), the kinetic equation for the spectral action density Nf can be written in the following
general form:
(3.3) aNtr - .J dk],dknfm (Nm - Nf) Na0e.m.

with fn denoting the integration over the wave numbers satisfying ke + km + k, = 0, the Fmn are the

interaction coefficients depending on the specific model and 0emO = Re { [pimn + i (wem )] 1 } . The coupling

coefficient thus appears as an frequency uncertainty coefficient among three interaction waves, indicating a
broadening of the resonance condition. For the determination of p.em Holloway suggests to identify it with the
sum of the individual interaction rates P1emn = 7Ye + 77m ± ?n with the fundamental interaction rate Tie given by
7 = fA dkmdknFemnNnOemn . Equation (3.3) together with the relations for Ofn,, Iemn and r77 constitute a
closed set of equations describing the evolution of strongly-interacting waves. In the approach of Becq-Girard
em et al. (1999) an approximate version of the approach of Holloway has been followed. Here the parameter
ILemn has been replaced by a fixed parameter K to be chosen beforehand. No simple prescription how to choose
K is available.

4. Perturbation-series approaches. Another approach to describe the non-linear triad interactions is
by the direct application of Stokes' second-order wave theory to directional random waves. This has been done in
a classical Stokes' second-order perturbation-series approach for deep-water waves by e.g. Masuda et al. (1979),
and for an arbitrary water depth with a horizontal bed by e.g. Dean and Sharma (1981) and Laing (1986).
Willebrand (1975) started from a variational principle and derived similar results which are also applicable to
mildly sloping sea beds.

'In the Russian literature cumulant is also termed semi-invariant.
2
Rasmussen also considers effects of wave dissipation due to wave breaking, which effects we here ignore.
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FIG. 4.1. Influence of the amount of directional spreading on the second-order spectrum.

The perturbation-series approaches make distinction at a certain frequency between free wave-components
satisfying the wave dispersion relationship and bound components forming a non-resonant triad with two free
components. The bound wave-components are traveling with a celerity not satisfying the wave dispersion
relationship. This multi-component description per wave frequency and direction is different from the approaches
described in Section 2 (e.g. Becq-Girard et al., 1999; Eldeberky and Madsen, 1999; Herbers and Burton, 1997;
Rasmussen, 1998) which consider only one wave component per wave frequency and direction.

Using the nomenclature of Laing (1986), the free surface elevation (((x, t) in the perturbation-series approach
can be described as:

(4.1a) C(x,t)= Amexp[i(wmt-km.x)] +
M= -00

+ D2 (wm, km; Wn, kn) _ AmA exp[ i (m,nt - rm,,n -X)1,
Q2 g .I 72~(g Kmn. tanh KCm,n h)] m

with Qm,n = Wm + Wn and Km,n = km + kn respectively the angular frequency and the wave number of the
bound-wave components with kernel D 2 , K,,n = I-,•nI, (Wm,Wn) and (km,kn) the angular frequency and
wave number of the free-wave components. Further we have for the negative-indexed quantities the following
symmetry relations in order to get a real-valued free surface elevation ((x, t):

(4.2) W-m = -Wm, k-r = -km, and A-, = AM*.

Assuming the first-order wave components Am to be due to a stationary Gaussian process, it is easy to derive
an expression for the (two-sided) power spectrum c(w, k) of the free surface elevation ((x, t):

(4.3a) •(D L, k) = 4>1 (w, k) + 4)2(P, k),

(4.3b) 'D2 (Li,k) = //dki dw, 2G1 lL ok-ki i )( ok-k)

D2 (wL, kl ; L12, k2)
(4.3c) D 20(w1, ki; w 2, k 2) = 2 1

g [1 - 1,2/(g kl,2 tanh kl,2 h)

with 4)1 (w, k) the two-sided first-order spectrum of the free wave components, 61, 2 = w1 +w 2, kl,2 = l,21 and
kl,2 = k1 + k 2 .
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For waves with a first-order JONSWAP spectrum and cos 2,(0/2) directional distribution in a water depth
of 8 meter and a peak frequency of 0.91 Hz, Figure 1 gives an example of the influence of the amount of direction
spreading on the wave-number integrated one-sided frequency spectra S, (f) and S2(f):

(4.4) S1 (f) = 47rJ I l(27rf, k) dk and S2(f) = 47r 1 4)2(27rf, k) dk.

For a given first-order free-wave spectrum (D 1 (w, k) the associated second-order bound-wave spectrum ()2 (w, k)
can be determined in a straightforward manner. However, in general the total spectrum (I(Lv, k) is given and
(Ib (w, k) and 4)2(w, k) are unknown. Laing (1986) used an iterative procedure to split a given spectrum into a
(first-order) free-wave part and a (second-order) bound-wave part.

5. Concluding remarks. In the coastal zone wave non-linearity is dominated by non-resonant and near-
resonant interactions between wave triads. This in contrast with the situation in deep water, where the energy
content of the bound sub-harmonics is neglegible and the bound super-harmonics also become much less im-
portant (but do not vanish).

Two approaches are being studied: cumulant-closure approaches and perturbation-series approaches. At
the moment there exist no well-proven cumulant-closure relationships, while the perturbation-series approaches
are self-contained at a certain order and do not need additional closure. At this moment the inclusion of a
perturbation-series approach (e.g. Laing, 1986; Willebrand, 1975) into a spectral model for coastal regions like
SWAN (Booij et al., 1999) seems the most straight-forward method for the inclusion of the major non-resonant
bound-wave triad interactions.

For a horizontal bed both the cumulant-closure approaches and the perturbation-series approaches are both
supposed to include a description of second-order bound waves. So, a carefull comparison of both approaches
for this horizontal bed case can lead to more insight into their working and into their weak and strong points.

Another point which still needs further research is the description of near-resonant triad interactions other
than the bound waves.
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Ship-generated waves have always fascinated scientists, and 2 -

played a key role in surface-ship hydrodynamics for con- -_-_

tributing to hull resistance, generating sounds and radiating
very long narrow wakes remotely visible. Some of these phe-
nomena originate abeam the ship through extensive breaking - .
of diverging bow and stern waves, forming a wake.

In this paper we summarize and extend our recent re- -___

search activity aimed to understand the complex fluid dy-
namics involved in bow- and stern-wave radiation, includ- 1.5
ing wave breaking. The analysis is limited to practical slen-
der ships, with a sharp stem, for which basic insight can be
achieved by an approximate quasi three-dimensional model • -
based on the idea that longitudinal gradients of relevant flow
quantities are small compared with vertical and transverse
gradients. A historical recollection of slender-body theory
for ship hydrodynamics is given by Maruo (1989), Tulin and
Wu (1996), Fontaine and Tulin (2001). 1 2

In this framework, two methods have been developed at
the OEL. One based on a potential flow model, where the
velocity field is given through the Laplace equation solved
by a Boundary Element Method (BEM), and the evolution in
time is obtained by integration of free-surface boundary con-
ditions. Specific details of the latest code are documented in
Landrini and Colagrossi (2001 a). The method has the advan- -

tage of high resolution, sufficient to capture breaking, and to 0.5

trace jet overturning up to the impact against the underlying
free surface. -

Post-breaking evolution is studied by a gridless method, _

called SPH and developed by Monaghan and co-authors (see
e.g. Monaghan (1988)), which we applied to breaking waves - ...... _ _

since the previous Workshop. In this case, Euler equations ...-... _::_

for a weakly compressible fluid have been considered. Fur- __.............__ -
ther developments led to a code named SPlasH, applied to a 0

variety of free-surface problems, and presented in Tulin and Figure 1. Wave pattern around a Wigley hull (B/L = 0.1, D/L = 0.1,
Landrini (2000), Colagrossi et al. (2000). A detailed descrip- Fr = 0.3) by 2D+t (BEM) computations.
tion of the algorithm is given in Landrini et al. (2001 b)

The global picture by BEM In the 2D+t method, calcu- system of diverging waves radiated at the bow as a result of
lations are carried out in two dimensions, vertical and trans- the collapse of the "splash", and second the "rooster tail" due
verse to the ship, and successively in time. Fig. 1 shows the to the gravity rebound of the free surface just past the stern
three-dimensional steady wave pattern around a Wigley hull which, in turn, is the source of another system of diverging
reconstructed by collecting successive free-surface configu- waves.
rations. A thorough analysis of the genesis of diverging bow

Two key features of the flow are evidenced: first, the waves is given by Tulin and Wu (1996). The collapse of
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Figure 2. Evolution of the splash at the bow of a Wigley hull (BIL = -0.02

0.2, DIL = 0-1, Fr= U/lv., = 0.4) by 2D+t (BEM) computations.
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-0.06
splash at the bow is detailed through Fig. 2: the free-surface
flow is not much decelerated before the stem, but upon reach- -0.08
ing it, is deviated sharply upwards, rises on and eventually
levels off and falls down. An entire thin sheet is formed in -0.1

this process and appears as a splash on either side of the hull. -0.05 0 0.05
The relaxation of these splashes is the prime source of di- 1.4 -

verging waves. In the present case, radiated waves are large , " i
enough to break, following the typical evolution: crest-rising, M -

front-steepening and jet formation. 1.2

Diverging breaking waves can be radiated also by tran- - __
som stems. This is shown in the case of a Wigley hull, suit- 1

ably tapered to have a deep transom stem (cf top-plot in __

Fig. 3). The computation is performed as in previous cases 0.8 41
up to the last section. We then assume that the transom is •
dry and the potential is continuous across it, this provides 0. _ __-

the initial conditions for the following free-surface evolution. _._

The resulting wave pattern for Fr=U//g-T = 0.3 is shown_
in the center-plot. Beside the already mentioned bow wave 0.4 _ _-

system, here we observe a sharp rooster tail, surrounded by
steep breaking diverging waves. The analysis of the flow field 0.2
shows that the rooster tail is caused by i) the inward motion
of the fluid in proximity of the ship associated with the con- 0______--__-
traction of the hull cross section and eventually colliding after
the end of the ship, and ii) the gravity rebound of the free sur- F r=0.3
face. Both features are also detected in the case of Fig. 1, Y
but for a dry transom stern the cavity left in the free surface 4.
gives rise to a stronger rebound. The growth of stem waves

is better shown in the perspective view in the bottom plot. At
first, the free surface move inwards and upwards, creating a
sort of triangular hump. Later, the main bulk of fluid starts to
collapse down, leaving a thinner and thinner jet, and a couple
of steep waves propagating outwards emerge, breaking soon
after.

Post-breaking analysis through SPlasH In practical cases
ship-generated waves break, and further analysis by BEM
would require special treatment of the free surface, often un-
physical or not practical. The reasons for ship waves to break
can be found in ship geometry (bow-flare, transom stem),
higher speed of advance, interaction with ambient waves.

The gridless code SPlasH has been developed to han-
dle these breaking cases. The evolution of a breaking bore,
shown in Fig. 4, gives an idea of the capabilities of the Figure3. Wave pattern around a modified Wig ley hull with a transom
method. The flow is generated by a piston moving hori- stern by 2D+t (BEM) computations. Top: ship cross sections: center:
zontally with constant speed. After a while an energetic wave pattern; bottom: detail of rooster tail and breaking waves past
jet appears, impacting with the underlying free surface and the stern.

- 90 -



IA ~ ~ ~ ~ ~ ~ ~ en otAAOiL.jdki =,4 7ii uc'lll&terIrI 20).

-0.1

-0

01

°-0. 1 A ý _ 04 k........ ..... ..

-0.6

+!++ ' It"'

Figure 4. Breaking bore and splash-up cycles forced by a piston
moving from left to right in finite depth water. Computations by SPH
method.

creating a cavity and therefore circulation (here clockwise).
The strong splash-up I appears, center-plot, evolving into a

counter-rotating vortical structure and another forward splash
up IH, bottom-plot. The strength of the plunging jet is crucial
in determining that of the following splash-up and the entire
resulting process, which for the breaking bore here consid-
ered is characterized by several splash-up cycles, Tulin and
Landrini (2000). Figure 5. Breaking bow waves in model testing. INSEAN Model

We have discovered similar features in breaking ship 2412 of the US Navy DDG51 (Fr-0.4 1).
waves by analyzing pictures of model testing (pictures taken
by Penna and Guerra at the INSEAN model basin). In par- shown, with the ship center plane located at y = 0, and the
ticular, Fig. 5 shows the bow wave generated by a frigate mid-ship cross section at x = 0. The impacting jet gener-
(DDG5 1-type of the US Navy) with a strong flare. For ates a splash-up, evolving into i) a vortical structure left be-
Fr= 0-4 1, the splash readily evolves into a plunging jet, creat- hind the crest, and ii) remaining particles riding on the crest
ing the splash-up shown in the enlarged detail which reveals emerging after the breaking which resemble the steady eddy
also the surface scar associated with the backward facing jet used by Cointe and Tulin (1994) to model two-dimensional
to be compared with the bottom-plot in Fig. 4. steady spilling breakers. This flow pattern is better visible

We applied SPlasH in a 2D+t fashion to study the post- in the two-dimensional bottom plot, and is remarkably simi-
breaking behavior of ship waves. We first discuss the case of Jar to pictures of (two-dimensional) breaking waves shown in
a Wigley hull. The initial evolution has been already shown Melville (1996).
in Fig. 2 and, in this case, the computations are initialized On this ground, in breaking ship-wave patterns, we can
by those BEM results. This procedure simplified the mod- distinguish a TYPE I breaking, resulting from less energetic
eling, increased the efficiency and allowed an optimal reso- breaking waves, and resembling the steady spilling breaking
lution of the computation, with a high number of particles observed e.g. past hydrofoils at small incidence, and a TYPE
clustered into the jet. The three-dimensional wave pattern is 11 breaking, with strong (possibly multiple) splash-up, caus-
reconstructed in Fig. 6, where only the upper layer of parti- ing larger air entrapment and vortex generation.
cles is represented. Only the portion around the breaking is TYPE 11 breaking is (usually) generated at the bow of
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Figure 6. Top: perspective view of 2D+t computation by SPlasH ....
of the wave pattern generated by a Wigley hull (B/L = 0.2, DIL 0. 1,
Fr= 0.46); bottom: two-dimensional view of late evolution.

ships with pronounced flare, and the numerical simulation by

SPH requires the modeling of arbitrary curved boundaries.
This extension of SPlasH has been recently accomplished by
generalizing the concept of "ghost particles" and a prelimi-
nary result is given in Fig. 7 for a frigate-type ship (used by - ---

O'dea and Walden in their analysis of deck wetness). The
flare is less pronounced than in Model 2412, and the collapse
of the splash, top plot, causes a weaker breaking than that ob-
served in Fig. 5. The resulting three-dimensional wave pat-
tern is reconstructed in the bottom plot. Figure 7. 2D+t computation by SPlasHof wave pattern around a

Results for Model 2412 and for the post-breaking evolu- frigate. Top: the collapsing splash at the bow; bottom: perspective

tion of stem waves will be discussed at the Workshop. view of the resulting wave pattern.

E. Fontaine, M.P. Tulin "On the prediction of free-
ACKNOWLEDGEMENTS surface flows past slender hulls using the 2D+t theory: the

This work has been supported as part of a program for evolution of an idea", Ship Tech. Res., 2001.
the simulation of ship breaking waves by the Ship Hydro- M. Landrini, A. Colagrossi "TwoDPT: a 2D+t code for
dynamics Program of ONR, initiated by Dr. Ed Rood and ship hydrodynamics", OEL Technical Report, 2001
now supervised by Dr. Pat Purtell. The research acitiv- M. Landrini, A. Colagrossi, M.P. Tulin "Gridless simula-
ity of M.L. is also supported by the Italian Ministero dei tion of sloshing flows in tank", OEL Technical Report, 2001
Trasporti e della Navigazione through INSEAN Research H. Maruo H. "Evolution of the theory of slender Ships",
Program 2000-2002. Ship Tech. Res., Vol. 36, pp. 107-133, 1989.

W.K. Melville W.K. "The role of surface-wave breaking
in air-sea interaction", Ann. Rev. Fluid Mech., Vol. 28, 1996,

REFERENCES pp. 279-321, 1996.
R. Cointe R., M.P. Tulin "A theory of steady breakers", Monaghan J.J., "An Introduction to SPH", Comp. Phys.

J. Fluid Mech., Vol. 276, 1994. Comm. 48, pp. 89-96, 1988.
A. Colagrossi, M. Landrini, M.P. Tulin "Near Shore M. P. Tulin, M. Landrini "Breaking waves in the ocean

Bore Propagation and Splashing Processes: Gridless Simu- and around ships" Proc. of 2 3rd ONR Symp. on Naval Hydro-
lations", Monterey (CA), OEL Tech. Report 00-224, 2000. dynamics, Val de Reuil, France, 2000.

E. Fontaine, M. Landrini, M.P. Tulin On modeling the M.P. Tulin, M. Wu "Divergent bow waves" Proc. of 21st
post-breaking phase: splashing. Proc. of 15'h Int. Work. Wa- ONR Symp. on Naval Hydrodynamics, Trondheim, Norway,
ter Waves Float. Bodies, Eds. T. Miloh and G. Zilman, 2000. National Academy Press, Wash. D.C., pp. 99-117, 1996.

- 92 -



SOLUTION OF RADIATION PROBLEMS WITH
EXACT GEOMETRY

by C.-H. Lee' and J. N. Newman 2

1 WAMIT, Inc., Chestnut Hill, MA USA (chlee•dwamit.com)
2 MIT, Cambridge, MA USA (jnndmit.edu)

(16th Workshop on Water Waves and Floating Bodies - Hiroshima, Japan - 22-25 April 2001)

The panel method is used frequently to solve three-dimensional radiation and diffraction
problems in the frequency domain. In the usual numerical procedure the submerged surface
of the body is represented by small elements. Both the solution for the velocity potential or
source strength, and also the body geometry, are approximated on each element.

In most practical cases the number of elements needed to achieve the desired accuracy is
large, on the order of 1000. Significant effort may be required to develop a suitable set of
elements for input to the program. Generally this requires the use of special pre-processing
software. Several input files with systematically smaller elements may be required to establish
convergence. Despite these problems, the low-order panel method is widely used for radia-
tion/diffraction analyses, even for simple bodies such as spheres and cylinders.

It is not strictly necessary to approximate the body geometry, if it can be represented ex-
plicitly in the program. This avoids the effort of developing appropriate input files with small
elements, and provides a more accurate description of the geometry. The explicit representation
is most useful in conjunction with a higher-order representation of the solution. Some modifi-
cations are required in the numerical implementation and coding, particularly with respect to
the evaluation of the influence functions.

In some cases one explicit algorithm is sufficient to describe the entire body surface. A much
wider class of bodies can be represented by subdividing the submerged surface into patches,
with separate algorithms corresponding to each patch. The truncated circular cylinder is an
example, where two separate patches are required to represent the cylindrical side and circular
flat bottom. The fundamental property of each patch is that its surface is smooth, continuous,
and differentiable. The most general definition of the class of bodies we include here is that
the submerged surface can be subdivided into a set of patches, where a pair of parametric
coordinates (u, v) is used to define the position on each patch, the boundaries of the patch map
to a square in the parametric space, and an explicit transformation x(u, v) exists between the
Cartesian space (x, y, z) and the parametric space.

This procedure has been used to extend the capabilities of the radiation/diffraction code
WAMIT. Except for the use of explicit geometry we follow the approach developed by Maniar
(1995), and described by Lee et al (1996). In that work B-splines are used to represent both the
geometry and the velocity potential on each patch. Here we use B-splines only to represent the
velocity potential. The accuracy of the solution can be systematically refined by controlling the
degree of the B-splines, and/or subdividing each patch into 'panels' with B-spline knots at the
panel boundaries. Three examples follow, with brief descriptions of the body representation
and hydrodynamic results.
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Truncated vertical cylinder with an oblate spheroidal bottom

The family of bodies shown in Figure 1 is generated by a simple subroutine. Quadratic
B-splines are used to represent the solution. On each patch, 2 x 2 or 4 x 4 panels are used.
In the case R = 0, corresponding to a submerged oblate spheroid, one patch is used with 16
or 36 unknowns. In the cases R > 0 two patches are used and the total number of unknowns
(B-spline coefficients) is 32 or 72, respectively.

Figure 2 shows the heave added-mass and damping coefficients. For the three intermediate
cases (ft = 0.25, 0.5, 0.75) the damping coefficient (and also the heave exciting force) vanish
at (k = 0.045, 0.22, 0.74), respectively.

The McIver toroid

The McIver toroid shown in Figure 3 was analyzed by Newman (1999), using the low-order
panel method. The results of that work confirmed the existence of a singular solution at the
first zero of the Bessel function Jo(k) (k = 2.4048). However the convergence of the low-
order analysis is relatively slow near the singular wavenumber, and up to 8192 panels were
used (2048 unknowns). For the present higher-order analysis an explicit representation of the
geometry has been developed. The procedure described by Newman (1999) is used to compute
the loci of points on a cross-section. These points are expressed in terms of the toroidal
coordinates R and 0 about the axis of the ring source and the radius R(O) is approximated by
an economized polynomial of degree 10. The maximum error in this approximation is a radial
difference on the order of 0.00001. Only one patch is required to represent one quadrant of the
toroid, as shown in Figure 3. Quadratic B-splines are used to represent the velocity potential.

Figure 4 shows the heave added mass in the vicinity of the singular wavenumber, and the
convergence of the singular wavenumber with increasing numbers of panels using both the low-
and higher-order methods. (The singular wavenumber is defined here as the value of k where
the added-mass coefficient changes sign from positive to negative values.) It is apparent that
the higher-order solution is more accurate, and requires a much smaller number of unknowns.

Rectangular barge with moonpool

A rectangular barge with two planes of symmetry and a rectangular moonpool at its center
is represented by six flat rectangular patches (end, side, moonpool end, moonpool side, bottom
forward of the moonpool, and bottom outboard of the moonpool). The principal dimensions
are length=16m, beam=4m, moonpool length 8m, and moonpool width 2m. The draft is varied
between 0.125m and 2.Om to illustrate its effect on the moonpool resonant frequencies. The
table below shows the peak amplitude and wavenumber for the first five Fourier coefficients
of the free-surface elevation in the moonpool. In the 'radiation' data the barge oscillates in
the surge/heave modes in calm water, and the Fourier coefficients are evaluated directly from
the resulting free-surface elevation on the centerline of the moonpool. In the 'diffraction' data
the barge is fixed in incident head waves. Most of the resonant amplitudes are greater in the
radiation problem, due to the stronger forcing by the body motions.

The last line in the table shows the asymptotic limits of the resonant wavenumbers for
infinite draft. In this limit the resonant modes n > 0 correspond to standing waves with n
nodes, in a basin with the same horizontal dimensions as the moonpool. As the draft is reduced
the resonant wavenumber increases, corresponding to a reduction in the resonant wave period.
This was first noted and explained by Molin (1999). For the 'pumping mode' (n = 0) the
resonant wavenumber k - 1/T for large draft T.
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draft(m) k0  lcol ki Icil k2  Ic2 1 k3  Ic31 k4  Ic41

radiation: 0.125 0.82 3.0 1.00 0.4 1.27 14 1.60 5.1 1.93 89
0.25 0.76 3.0 0.92 1.1 1.18 15 1.49 16 1.82 127
0.5 0.64 3.2 0.78 3.4 1.03 21 1.34 84 1.68 310
1.0 0.48 3.9 0.62 16 0.89 56 1.22 1115 1.59 465
2.0 0.32 5.0 0.48 127 0.81 500 1.18 35000 1.57 3300

diffraction: 0.125 1.28 0.6 1.61 1.0 1.95 1.0
0.25 0.92 1.1 1.18 1.1 1.49 2.3 1.82 3.8
0.5 0.78 1.3 1.03 3.1 1.34 7.2 1.68 16
1.0 0.46 1.0 0.62 4.3 0.89 12 1.22 32 1.59 91
2.0 0.31 3.5 0.48 17 0.81 72 1.18 572 1.57 225

00 0 0.39 0.79 1.17 1.57

Table 1: Resonant wavenumbers k, and amplitudes Icul of Fourier modes in the moonpool of a rectangular
barge. The last line shows the infinite-draft limits.

REFERENCES

Lee, C.-H., Maniar, H., Newman, J., & Zhu, X. 1996. 'Computations of wave loads using a
B-spline panel method,' Proc. 21st Symp. on Naval Hydrodynamics, Trondheim, pp. 75-92.

Maniar, H. 1995. A three dimensional higher order panel method based on B-splines, Ph.D.
thesis, MIT.

Molin, B., 2000. 'On the sloshing modes in moonpools, or the dispersion equation for progressive
waves in a channel through the ice sheet,' Proc. 15th Intl. Workshop on Water Waves and
Floating Bodies, Caesaria, Israel, pp. 122-125.

Newman, J. N. 1999. 'Radiation and diffraction analysis of the McIver toroid,' J. of Engineering
Maths. Vol. 35, pp. 135-147.

R=0.00 R=0.25 R=0.5 R=0.75 R=1.0

Figure 1: Perspective views of the truncated vertical cylinder of radius R < 1, extending from the free surface
(z = 0) to z = -1, with an oblate spheroidal bottom which has a radius equal to 1.0, and extends from z = -1
to z = -2. The boundaries of the patches and their images are shown by dark lines.
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Figure 2: Heave added-mass and damping coefficients for the family of bodies shown in Figure 1.

Figure 3: Perspective view of the McIver toroid generated by a ring source of unit radius, with the inner
waterline at r = 0.2 and the outer waterline at r = 2.4687.

500 2.43

M-6126
40 .!-.- .-. oo1

20-2048 2.42
300 M-1007

200 A2.4 -

- ••• • • ' . . . .
-100 10/ I_ý_ LOW, ERR-fl

2.39 -ý k2.4048-.
-200:

2.0 2 2.3 2.4 20ý 2.6 2.7 0123
kc 100/N

Figure 4: Results for the McIver toroid. The left figure shows the heave added-mass coefficient, including
results from the low-order analysis with N=128, 512, 2048 panels on one quadrant of the body surface, and
the higher-order results with explicit geometry definition (N=100 unknowns). The latter results are converged
within graphical accuracy. The right figure shows the convergence of the low- and higher-order results to the
singular wavenumber Jo(k) = 0. IRR=1 denotes that the irregular-frequency effects are removed.
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Introduction ertia, Mb the mass, GM the metacentric height, a the roll dis-
Correct predictions of response of floating bodies in waves have placement, y the heave displacement, and y, the amplitude of
been of great interest in the field of naval architecture and ocean heave displacement (see Fig. 1). The last term of the equation,
engineering. Time-domain analysis based on potential-flow the- K.., is the nonlinear restoring moment per unit roll and unit
ory remains a popular approach (see e.g., Vinje and Brevig, 1980, heave displacements. The nonlinear coefficient K. was given
Tanizawa and Naito, 1997, Van Daalen 1993, Wu & Eatock- in terms of body geometry by Paulling and Rosenberg (1959).
Taylor, 1996, Celebi & Beck, 1997), even though in many oc- However, for a wall-sided cylinder, it is not difficult to show that
casions viscous effects cannot be ignored. K~y = pgOGA•,, where 50 is the distance between the cen-

Roll response near its resonance condition, in particular, is ter of gravity and the body center and A,=B being the (two-
strongly affected by viscous damping, not only in terms of the dimensional) waterplane area for the cylinder. Equation (1) can
steady-state response amplitude, but also in terms of the stabil- be nondimensionalized to obtain the standard Mathieu equation
ity or boundedness of the response itself, as we will address in (see for example, Jordan and Smith, 1988):
this paper. It is possible to account for viscous effects but intro- d2

C,
ducing damping in an empirical way (see, e.g., Himeno, 1981, - + (3 + cCOsr)rt = 0, (2)
Cointe et al., 1990, Sen ,1993). Nonetheless, it would be highly 3 = (
desirable to remove such empiricism by including the considera- -(yo/GM)(K~y/Mb), (3)

tion of viscosity at the outset of the flow problem. This has been and 7- = wvt. The heave and roll natural frequencies are defined
successfully pursued by Yeung and Liao (1999) in their FSRVM as
(Free-Surface Random-Vortex Method) method. In this paper, we
explore the analysis and the computational basis of how the cou- w, = (pgB/(Mb + 1122))/, (4)

pled multiple-degrees of freedom response of a floating body can w,. = (MbgGM/(Ig + P33))1/2 (5)
critically depend on the presence of viscous damping. Equation (2) is known to be unstable at 3 p 1/4 even for a

The interesting phenomenon of Mathieu instability, arisen from small value of E, the nonlinear coupling term. This is equivalent
the coupling between heave and roll motion (Paulling and Rosen- to saying that the cylinder is unstable when w./w, = 1/2 even
berg, 1959) is investigated. The effects associated with the pres- with only a small amount of forcing from heave. The stable and
ence of bilge keels and fluid viscosity on the response near a unstable regions were obtained by Stoker (1950) using perturba-
"troublesome" resonant condition are addressed. The nonlinear tion methods. This is plotted in Fig. 2, which identifies that the
coupling between heave and roll is vital, thus the issue is very Mathieu equation is highly unstable around 3 = 1/4. Beyond this
much related to large-amplitude motion. A cylinder having inter- critical value of 3, a finite amount of heave forcing is needed to
esting geometrical properties is devised for both experiments and induce roll instability.
computations. This cylinder is shown to be dynamically unstable In the figure, additional stable regions due to the presence of a
under certain conditions according to the Mathieu equation. linear damping term is also plotted. The damped Mathieu equa-

tion with linear coefficient A, is given by:
Nonlinear heave-roll coupling d

2
c, da

It was known from the time of Froude (1863) that the coupling T-7 + /IT + (6+cos-)a = 0, (6)
between heave and roll can result in unstable ship motion. The A3 3
phenomenon was investigated experimentally and theoretically by --- w + /133) (7)
Paulling and Rosenberg (1959) for a ship undergoing forced oscil-

lation in heave with an initial roll angle. The instability is related The source of damping can result from both wave generation and
to the geometrical properties of a ship, the location of center of viscous dissipation associated with the motion. The stability of
gravity, and the amplitude of the heave motion. This instability in Eqn. (6) is well studied especially for 3 • 1/4 (e.g., see Jordan
roll is most likely to occur at the heave resonance frequency W, and Smith, 1988). The Mathieu equation with damping is stable
when the heave amplitude is sufficiently large. if the index

Based on the equilibrium between inertia and restoring mo- [(6 [ - 1,2 -,2)] >0. (8)
ment, the roll equation of a cylinder about its center of gravity L( 4) 4 ( j

(Paulling and Rosenberg, 1959) can be written as This means for 6=1/4 Eqn. (6) is unstable whenever e > p. Phys-

d2 C, ically, this implies that a critical amount of damping is needed for
(Ig + t133)-1 + MbgGMcx + K,.cxy cos(wvt) = 0, (1) a given heave response in order to suppress the instability. Inves-

dt tigation of this instability condition in the context of a cylinder in

where I1 is the moment of inertia, t/33 the added moment of in- waves is therefore of fundamental and practical interest.
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A "marginally stable" cylinder open boundary aDr. On the free surface, an oscillating pressure
In our laboratory tests and computer modeling, a marginally (dy- patch is used to generate waves. The vorticity equation is solved
namically) stable rectangular cylinder is designed so that its 6 by a fractional-step of successive convection and diffusion. The
value is slightly larger than 1/4. The unstable condition of convection calculations are carried out using a complex-variable
Eqn. (8) can be acquired presumably by introducing bilge keels, integral-equation formulation. The details can be found in Yeung
The argument would be that the bilge keel would increase the and Liao (1999) and Roddier et al. (2000). Applications of FS-
added inertia pe3, resulting in a 6 very much closer to 1/4. Thus RVM to a fixed submerged body in large waves were considered
the cylinder would easily fall into the unstable region of Fig. 2, in Yeung et al. (1999).
All of these expectations are based on a damping estimate us- Since the body is freely floating, the boundary conditions on
ing inviscid theory alone. In physical reality, while the 6 value the body are coupled to the rigid-body dynamics equations. A
moves closer to the critical value of 1/4 because of the bilge keels, methodology is established to couple the body accelerations to the
the viscous damping or its "linear equivalent " value will increase boundary conditions of the fluid by using Newton's Second Law.
also. As a matter of fact, the damping would increase sufficiently The following linear system can be derived and solved explicitly
that the cylinder could remain in the stable region. The laboratory for (.4, Yb, f,) at any t.
experiments of Roddier et al (2000) indicate that the cylinder has (Mb + All) A1 2  (A 13 - Mbyog) ]i.bl
no roll stability problem with or without bilge keels. This sub- [ \A , (M, ± A22) (A23 + MbIo,)
tle behavior offers a challenging test for a time-domain computa- L (A 3 2 - Mbyog) (A 32 + MbxA2) (Io + A3 3 ) 9LbtJ

tional model such as FSRVM, which can have viscosity turned on

or off. [ W 41 + MbXog.l2 1
The geometrical properties of the cylinder are: beam to draft = /W42 + MbyO&2 -MgJ . (9)

ratio B/H = 2, comer radius of bilges R = 0.0205B, center of 1W 4 3 - Mbgxo•

gravityy 5 = -0.141B, and the radius of gyration Rg = 0.352B.
The depth of the bilge keels is 6% of the beam B. Details of the In Eqn. (9), Aij s depend only on the contour of OD. On the other
keels may be found in Roddier et al. (2000.) To calculate the hand, W4js depend on solutions to the fluid velocity and vorticity
resonant frequencies, wv and w., the "FSRVM" of Yeung and field, which includes effects of wave excitation and hydrostatic
Vaidhyanathan (1994) is applied to simulateforced heave and roll terms.
oscillations to obtain added mass and added moment of inertia
coefficients. After tt22 and J33 are obtained for both inviscid and Numerical results
viscous solutions over a range of frequency (Yeung et al., 1998), To establish the validity of the computational model, results given
w, and w. are calculated through iteration using Eqns. (4) and (5). in Roddier et al. (2000) are shown for assessment. Figure 5
The damping or equivalent linear damping coefficients A33 are shows a comparison between the calculated and measured free-
also obtained through the simulations of forced oscillations, surface elevation for a slightly different frequency, Lo---0.6. The

The stability investigation is performed at an incident-wave fre- results of 3 dof of motion response are shown in Fig. 6. Figures
quency of C) -_ BVB-/2g = 0.7455, and wave amplitude to 5 and 6 show that the agreement is very good between calculated
wavelength ratio A/A\ = 2%. This frequency is very close to the and measured results. In the experiments, the model slides unre-
resonant heave frequency of the model. There are four configu- strained along a pair of horizontal guides. The friction of these
rations of the cylinders considered in this study: inviscid and vis- guides need to be accounted for (see Case (c)).
cous fluid simulations for the cylinder, each for the case of with, or If a cylinder is unstable, a valid numerical model should be
without bilge keels. Table I summarizes the estimated parameters able to capture the expected instability. Results of numerical sim-
in Eqn. (6) for these four scenarios based on frequency domain so- ulations using the FSRVM model are presented for the four con-
lutions. Case I1 & 12 represent inviscid fluid modeling, whereas figurations discussed in the previous section (see Table I). Since
Case V 1 & V2 represent full Navier Stokes solutions of the prob- the instability is associated with excessive heave motion, the in-
lem. In the case of viscous flow, the equivalent linear damping stability should disappear if the cylinder is restrained in heave.
coefficient I is obtained by Fourier analysis of the time history of To verify this, inviscid results are also presented for the cylinder
the applied moment. being restrained in heave and sway.

In Table 1, the stability index cl of Eqn. (8) is also shown for Figure 7 shows the roll displacements of the freely floating
the specific values of 6, c, and t. Thus, the cylinder is stable if cylinder cylinder for the same four configurations mentioned. It
ci > 0 and vice versa. It is seen that Case 12, an inviscid model can be seen that the response is bounded for all cases except for
with bilge keels, will have an unstable roll response, while the the inviscid case with keels (Case 12). This confirms that the time-
other cases are dynamically stable, domain modeling of FSRVM can predict the instability correctly.

The boundaries of stability in Fig. 2 near 6 = 1/4 can be ob- The roll response for the unstable case shows that the cylinder pri-
tained by setting Eqn. (8) equal to 0. Figure 3 shows the "max- marily rolls at the wave frequency for t < 10. For I > 10, the
imum" heave-motion parameter c for stability as a function of 6. cylinder starts rolling at the roll natural frequency, which is one
In each curve t is taken as the minimum damping based on the half of the wave frequency! Shortly after, the cylinder capsized.
specific c and 5 values for the case at issue. This plot shows that Figure 8 shows two sets of inviscid results of roll displacements
Case 12 is clearly unstable while Case V2 has the largest amount for the cylinder restrained in heave and sway. The roll response
of stability margin. is bounded if there is no heave motion, but grows without bound

when there it is restrained from swaying. This also confirms the
Time-domain theoretical model instability is related to the nonlinear coupling between heave and
The computational model FSRVM used to obtain the motion of roll.
a freely-floating body in a viscous fluid is fully nonlinear. The
boundary-value problem is defined in Figure 4, where a vorticity Conclusions
and stream-function formulation is used. The computational do- The nonlinear effects, associated with bilge keels and fluid vis-
main is bounded by the body 0Db, the free surface i9Df, and the cosity, on the response of cylinders in waves were investigated.
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ICase Dy I C E cl

Inviscid fluid
Il No keels 0.7603 0.4194 0.3024 j0.1680 0.1719 0.00168
12 Withkeels 0.7455 0.3736 0.2511 0.1395 0.1545 -0.00110

Viscous fluid

V1I No keel 0.7604 0.4131 10.2952 0.1791 0.1633 0.00169
V2 With keels 0.7455 0.3969 0.2834 0.3374 0.1604 0.02361

Table 1: Nondimensional parameters for various numerical cases.

It was shown that the response characteristics were very differ-
ent depending on whether or not bilge keels and fluid viscosity
was considered. For the cylinder with keels, the response showed
that the proper modeling of fluid viscosity was critical in order
to predict the motion correctly. On the other hand, inviscid-fluid
models could predict an instability which is not always present in
the physical world. a(t)
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Resonances for cylinder arrays

by C M Linton & M McIver
Department of Mathematical Sciences, Loughborough University,

Leicestershire, LEll 3TU, UK

INTRODUCTION

The importance of trapped modes in the design of offshore structures which are supported by large
arrays of vertical cylindrical structures was brought to prominence by Maniar and Newman (1997)
who, in an investigation into the scattering of surface waves by a long but finite array of bottom-
mounted vertical circular cylinders, discovered that at particular frequencies the hydrodynamic
loads on the cylinders could become abnormally large. They identified this phenomenon with the
existence of resonant trapped modes when cylinders are placed in channels on the walls of which
either Neumann or Dirichlet boundary conditions are applied. For the Neumann case such modes
were well known, but Maniar and Newman's observation that such modes could exist when the
potential rather than its normal derivative was made to vanish on the walls, provided the cylinder
radius was smaller than some critical value, was new. The trapped modes that can exist when N
circular cylinders are placed across a channel in such a way that they form a section of an infinite
array of equally-spaced cylinders were subsequently investigated by Utsunomiya and Eatock Taylor
(1999). By representing the solution as a series of multipole potentials they were able to numeri-
cally compute N distinct trapped modes for any given cylinder radius when Neumann boundary
conditions were applied on the tank walls, but for the case of Dirichlet boundary conditions they
found N - 1 or N modes depending on whether the cylinder radius was greater than or less than
some critical value.

Porter and Evans (1999) used an integral equation technique to investigate the more general
phenomenon of Rayleigh-Bloch surface waves (for which no general existence criteria are known)
travelling along arbitrary periodic structures. Such waves are characterized by two parameters,
k and /3, the first being related to the frequency and the second corresponding to the dominant
wavenumber in the direction along the structure. The parameter 3 provides a natural cut-off in that.
for values of k less than /3 energy cannot propagate away from the structure and so it is possible to
look for specific values of k < 13 at which pure Rayleigh-Bloch surface waves can occur. Porter and
Evans showed that for certain discrete values of 0 these modes may correspond to trapped modes
in the vicinity of a finite array of cylinders spanning a channel; precisely the situation studied by
Utsunomiya and Eatock Taylor for an array of circular cylinders. If one assumes the existence of
pure Rayleigh-Bloch surface waves for a particular periodic structure, then Porter and Evans' work
explains the results of Utsunomiya and Eatock Taylor.

The purpose of this paper is to show that the channel modes found by Utsunomiya and
Eatock Taylor and by Porter and Evans correspond to discrete eigenvalues below the continu-
ous spectrum for certain differential operators and to show how standard variational arguments
can be used to prove their existence. The key ingredient is a decomposition theorem which shows
that functions f(y) defined on domains which are both periodic and symmetric about zero and
which also satisfy conditions equivalent to Neumann or Dirichlet boundary conditions on y = 0
and 2N can be decomposed into N + 1 orthogonal functions. This is a direct extension of the
decomposition of a function defined on a symmetric domain into its symmetric and antisymmetric
parts (which corresponds to the case N = 1). This result can be applied to the scattering poten-
tials for channels containing periodic structures and the class of all such potentials decomposed
into N + 1 subclasses. Green's theorem then shows that an incident wave in a particular class only
scatters waves from the same class.

Spectral theory can be used to show that N + 1 operators exist for each problem, all of whose
continuous spectra are bounded away from zero in the Dirichlet case and N of which have this
property in the Neumann case. The existence of trapped modes then follows from a standard
variational argument.
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DECOMPOSITION THEOREM

Assume that D C R is periodic with period 2 and also symmetric about zero, i.e. if y E D then
y + 2 E D and -y E D (from which it follows that 2n ±y E D, n E Z). Let f: D n [0,2N] -IR,
N E N, be given and extend it to a function on the whole of D by either

f(-y) = f(y), f(2N + y) = f(2N - y), (1)

which will be referred to as the Neumann case, or

f(-y) = -f(y), f(2N + y) = -f(2N - y), (2)

which will be referred to as the Dirichlet case. Under these conditions
N

f(Y) E fm(Y), (3)
m•-O

where

NN

f. N N cmff(y + 2n), (4)
2n=-N

N mn~r N2cos mN 2 (5)
Cmn N l±S-r-(mO±-]- mrN

and ,n, is the Kronecker delta.
Furthermore, suppose that two functions f and g, which are defined on the same domain D and

which both satisfy either (1) or (2), are decomposed according to (3) and (4), then the following
orthogonality result holds:

2N IN N-1 N-1

jfm(y)gi(y) dy=6.n,~ ̀ 6 E cJ f (y -+ 2s)g(y ± 2a) dy. (6)
0sN=_N or=-N

When N = 1 this decomposition theorem is nothing more than the splitting of a function defined
on a symmetric domain into its symmetric and antisymmetric parts. For N > 2 the symmetry
properties of the functions fm are still of interest, but they are insufficient to completely characterize
the decomposition.

As an example, consider the Green's function for the two-dimensional Helmholtz equation (V2 +
k2)0 = 0 in a channel of width 2N, satisfying Neumann boundary conditions on the guide walls.
One way to represent this function is as an eigenfunction expansion and then from (3) we can
obtain

N

G(x- y,r7)= Z G. (x -y,), (7)
m=0

where

G-(x -y,ii) = -n C0/ 3mnYCos o5C/mn?? (8)Nn=-oo rn

and
O~n= (32m1n -2 k2 1/ 1/2 (m + 2nN)(r

The function Gm represents a sum of unequal sources at x = ý, y = 2n ± 71, n E Z and thus has 2N
singularities within the guide (at y = q, y = 2n ± 77, n = 1,.. . , N - 1, y = 2N - 17) even though
the combination of these functions given by (7) only has one such singularity.

Suppose now that we wish to solve a scattering problem in a channel spanned by an array of
cylinders. The potential 0 can be split up into N + 1 orthogonal functions and if we apply Green's
theorem to 0 and Gm we obtain

I o)= OGM ds + xm, (6•q,) C B, (10)
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where Xm comes from the decomposition of the incident wave and B is the boundary of the cylinder
array. Thus, for the special types of geometry under consideration, an arbitrary scattering problem
can be decomposed into N + 1 independent problems.

This result is of both practical and theoretical importance. From a practical point of view, the
decomposition leads to a significant computational saving when calculating the effects of scattering
by an array of cylinders spanning a channel, and from a theoretical viewpoint it enables us to prove
the existence of trapped modes as described below.

RESONANCES

If we denote the fluid domain by Q, then the solution to a scattering problem of the type described
above will not be unique if a non-trivial solution to the homogeneous boundary-value problem

(V 2 +k 2)0= 0 in Q, (11)

- =0 on y=0,2N, (12)Dy
00
-0=0 on B, (13)
On

0,0 as I-x* oo, (14)

exists. If such a solution exists for a given k2 then k2 is an eigenvalue of -V 2 (with Neumann
boundary conditions) on the domain Q. The solution itself (which is known as a trapped mode or
an acoustic resonance) is the corresponding eigenvector.

In terms of the spectral theory of operators we can think of (11)-(14) as being an eigenvalue
problem for an operator A consisting of -V 2 in Q together with the various boundary conditions.
The spectrum of A is a closed set containing all the values of k2 for which the operator A - k21

does not have a bounded inverse and for the above problem this set can be divided into two disjoint
subsets. The values of k2 for which the operator A - k2I is not invertible are called eigenvalues of
A and together they make up the point spectrum of A, denoted by orp(A). It is well-known that
for the problem specified in (11)-(14) any eigenvalues are real and non-negative. The remainder of
the spectrum of A is called the continuous spectrum and denoted by o-(A). We can also consider
the set of values of k2 for which we can set up a wave scattering problem. This set is the essential
spectrum of A and is denoted by uess(A). The essential spectrum is the union of the continuous
spectrum and any embedded eigenvalues.

It is well-known that aess (A) = [0, cc) and so any eigenvalue of A is necessarily embedded in the
continuous spectrum which makes analysis of these eigenvalues difficult. One way of overcoming the
problem is to find a decomposition of the space of functions on which A operates, S = SoDS1 say ((D
denotes direct sum), such that when we consider the operator A restricted to one of these subspaces
the continuous spectrum is moved away from the origin. An example is provided by Evans, Levitin,
and Vassiliev (1994) who considered the case N = 1. Below we extend this decomposition to
arbitrary N E N which allows N eigenvalues to be found for each geometry.

Suppose then that we have a channel spanned by a periodic structure. The decomposition
theorem shows that any function which is defined on 0 can be written as

N

(x, = 0 (Xy) (15)
rM=0

and we can thus decompose the space of square integrable functions in the fluid region Q as

L 2(Q) = So (D S E... D SN, (16)

where Sm is the space of functions of the form 0ma(x, y). It makes sense to restrict the operator
A to one of the spaces Sm and this restricted operator will be labelled Am. Within a given space
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Sm, waves can only exist if k2 > m 2
7

2 /4N 2 . We write Om = m7r/2N and then it follows that the
essential spectrum for Am is given by

hess(A.) = 0 oo) (17)

and so there is a non-zero cut-off for each of the spaces except for So. Standard variational
arguments can then be used to show that the operator Am, m e {1,...,N} has at least one
eigenvalue less than /3k.

Different results apply to the Dirichlet case. Thus we consider the homogeneous boundary-value
problem (11)-(14) with (12) replaced by

¢=0 on y=0,2N, (18)

though we will still refer to the associated operator as A. The space L2 (Q) can be decomposed
exactly as before. The essential spectrum for A, is now given by

Uess(A,{0 = (19)
t [7r2, oo) m=0

and so there is a non-zero cut-off for all of the spaces. However, the case m = N corresponds
to a single body symmetrically placed about the centreline of a channel of width 2 with Dirichlet
conditions on the walls and it has been proven (see McIver and Linton 1995, p54 8 ) that no trapped
modes can exist in this case for k < 7r/2 = /3 N. Hence we can only hope to prove the existence of
trapped modes for m = 0, . . . , N - 1.

Variational arguments in fact show that the operator Am, m E {1,... , N - 1} has at least one
eigenvalue and that the operator A0 has at least one eigenvalue if the body shape satisfies some
geometric condition.

References

EVANS, D. V., LEVITIN, M., & VASSILIEV, D. (1994). Existence theorems for trapped modes.
J. Fluid Mech., 261, 21-31.

MANIAR, H. D., & NEWMAN, J. N. (1997). Wave diffraction by a long array of cylinders. J. Fluid
Mech., 339, 309-330.

MCIVER, M., & LINTON, C. M. (1995). On the non-existence of trapped modes in acoustic
waveguides. Q. Ji Mech. Appl. Math., 48(4), 543-555.

PORTER, R., & EVANS, D. V. (1999). Rayleigh-Bloch surface waves along periodic gratings and
their connection with trapped modes in waveguides. J. Fluid Mech., 386, 233-258.

UTSUNOMIYA, T., & EATOCK TAYLOR, R. (1999). Trapped modes around a row of circular
cylinders in a channel. J. Fluid Mech., 386, 259-279.

- 104 -



Abstract for 16th Workshop on Water Waves and Floating Bodies

Semi analytical solution for heave radiation of the
air cushion supported vertical circular cylinder

in water of finite depth

Malenica S & Zalar M.

BUREAU VERITAS - DTA, 17bis Place des Refiets, 92400 Cowrbevoie, FHance

Introduction

The hydrodynamic problem of air cushion supported floating bodies appears in several situations
of marine hydrodynamics : the use of the air cushions was the only way to tow the Gravity
Base Structures (GBS) from dry dock to the field of production, the surface effect ships (SES)
use the advantages of the air cushions to increase their performances, the succion anchors in
the phase of instalation, the projects of huge Mobile Off shore Units (MOB), the projects
of the bottomless FPSO-s, ... From the hydrodynamic point of view all these situations are
similar. The hydrodynamic behaviour of the structure change considerably, and the air cushion
effects should be taken into account properly in the mathematical model. Several numerical
methods were proposed [1, 2, 3, 4]. Even if these methods solves the same physical problem,
the approaches are quite different. The motivation for this work comes from the necessity to
have the analytical solution for one particular boundary value problem (BVP), which may be
used for the benchmark purposes. For this objective, we chose the case where the air cushion
effects are most pronounced which is the heaving motion of the body. In order to be able to
produce semi-analytical solution the case of the vertical circular cylinder in water of finite depth
is considered.

Theory

All definitions correspond to the figure 1. We skip the basic steps, and just recall the final
(frequency domain) boundary value problem (BVP) which have to be solved [2]:

A* = 0 inQ

-v + =0 zz=O, r>a

-uV + 0- + J LdS =a z=-d,r <a

-F=0 -d<z<O, r=aOr

-0=0 z=-hOz

lim[ Vr(-ar0 - ivo)] = 0 r -0 C

where Ao = 2air and a is the nondimensional number accounting for the air cushion effects:

Pe KpoAco(2S= ,• -- (2)

-gV5o
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Figure 1: Basic configuration and notations

Potential decomposition

As usually, we make use of the eigenfunction expansions to represent the potential in the different

domains (exterior and interior). We note that,due to the fact that only heave is considered, only
the 0 - th Fourier mode in the Fourier series expansion in circumferential direction, need to be
considered.
In the exterior domain we write the well known representation:

pex = cofo(z)Ho(kor) + E c,7 f(z)Ko(k,7 r) (3)
n=1

where v = k0 tanh k0 h = -kn tan k72h, Ho is the Hankel function, K 0 is the modified Bessel
function of the second kind, and:

fo(z) = coshko(z + h) f W cosk(z + h) (4)
coshkoh cos kn2h

Concerning the interior domain, the situation is little bit more complicated due to the presence
of the air cushion interface i.e. the "unusual" boundary condition which should be applied on
it. In order to find the correct eigenfunction expansion for the interior potential, first we assume
the solution as a combination of one homogeneous and one particular part:

O= + (5)

where the associated free surface conditions at interface are:

-Vo + Oz -0 , -,VPnO +Oz (6)

For the homogeneous part V;" we can write the representation similar to 0"

00

h = bogo(z)Jo(kor) + E bngn(z)Io(kn2r) (7)
71 1
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where Ja stands for the Bessel function of the first kind, Jo stands for the modified Bessel
function of the first kind, and:

cosh no(z + h) cos K,(z + h1)
go(z) cosh0o(h - d) ' gn(Z) = cos (h - d) (8)

with v = n0 tanh o0(h - d) = -Kn tan Kn(h - d).
The particular solution may be found, by inspection:

,1 (9)

From the boundary condition at the interface, we can now deduce the constant C:

C=a[1- J
2

?rfa Ohrdrdo] = a{1 - v[bo J(noa) + Z bnI°(0nr)]} (10)
KO n=1 n

which gives the following final expression for ,0)in:

n -- _ bo[_Jol(Koa) + g0(z)Jg(nor)] + E bn[- --Ii(ina)] + gn(Z)IO(nr)] (11)V no7=1 Kn

In order to obtain the unknown coefficients bn and c, we make use of the orthogonality of the
eigenfunctions by applying the boundary condition on the cylinder and the continuity conditions
(potential and radial velocity) at the intersection of the exterior and interior domains:

f--hpegn(z)dz = --dhingn(z)dzh}(12) n =0, (

h r--h9f(z)dz = d fr ; n=0,o

This leads to the following type of the linear system of equations for bL and c"•:

bt = coDo + E cnD.nD, + F1 ; 0, =,oc

001 (13)

cl = boEto + E bnEln + G, ; OC
n=1

where the coefficients D1n, Eln, F1 and G, follow from (12).

Forces

The forces are obtained by integrating the pressure over the body surface (hydrodynamic and
air cushion pressure). It may be shown [2] that, in the case of radiation, the force can be written
in the following form:

Fij = _W2Aij + iwBij = W2[ fw RjNidS + + aRjNidS] (14)

where Aij and Bij are the well known added mass and damping coefficients and VPRj is the
radiation potential (in our case
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Figure 2: Added mass and damping.

Some results

On the figure 2 we present the numerical results for the heave added mass and damping for the
cylinder with the radius of 30m and with the draught of lore. Static pressure in the air cushion
is p,0 = 2 - 105Pa and , = 1.4. Two values of the static air cushion volume Vc0 are considered
so that the notation VC1 stands for VL0 = 14137.2m 3 and VC2 for V,0 = 28174.3m 3 . We can
clearly appreciate the influence of the air cushion on these coefficients.
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Introduction

In linear water-wave theory a trapped mode is defined to be a non-zero solution of the homogeneous

equations and boundary conditions, which doesn't radiate waves and has finite energy. The exis-

tence of such modes supported by three-dimensional, surface-piercing bodies in the open sea was

first established by McIver & McIver[1]. They constructed an axisymmetric potential and defined

the shape of the body to be one of the stream surfaces of the flow. In practice, however, it would

be more useful to be able to specify the shape of the obstacle and determine whether there are any

trapped modes for that geometry. The purpose of this work is to show how this may be done for

certain classes of bodies by exploiting the link between three-dimensional trapped modes and zeros

of transmission for two-dimensional obstacles. First a plane wave approximation to a trapped mode

is derived, then a numerical technique for finding exact trapped mode wave numbers is described.

Finally some results which show that modes may be trapped by a submerged elliptical torus are

presented.

The plane wave approximation

A two-dimensional body which is totally submerged in deep water and which possesses a zero of

transmission is rotated through 360' about a vertical axis outside the body, to form a submerged

torus. The axis of rotation is at a distance c from a reference axis through the body where

c/a > 1 and a is a typical dimension of the original two-dimensional body. Rectangular Cartesian

coordinates are chosen so that the origin is in the mean free surface above the centre of the torus

and the z-axis points vertically upwards. An approximation to the trapped mode potential is sought

which represents a standing wave in the region r =- x/ + y2 < c and is zero for r > c. The two

potentials are then matched across the torus using the plane wave approximation of Simon[2]. The

axisymmetric standing wave is given by

Re[O e-iwt ] = Re[Jo(kr) ekz-iwt] (1)

where J0 is the zero-order Bessel function of the first kind, w is the angular frequency of oscillation,

k = w2 /g and g is the acceleration due to gravity. By writing kr = k(r - c) + kc and using the

addition theorem and the large argument expansion for Bessel functions, it may be shown that

1 ei(kc-7r/4)+kz [eik(r-c) +ie-2ikc e-ik(r-c)] kc > 1, k(r - c) = 0(1). (2)

2iýrkcIII

Near the body of the torus this represents a plane wave which propagates outwards along a radial

line and which is totally reflected by the two-dimensional body formed by the cross-section of the

torus. Clearly this can only occur if the wave number corresponds to a point of zero transmission

of the two-dimensional body and the reflection coefficient is given by

R = i e-2 ikc. (3)

This last equation gives possible values of kc in terms of the phase of the reflection coefficient. So,

if R = e'6 is known from the solution of the two-dimensional scattering problem, then

7r j
kc - - - + n7, (4)

4 2
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where n is an arbitrary integer. (Newman[3] used matched asymptotic expansions to perform

a similar but more rigorous analysis of a floating torus at small but non-zero values of R.) It
is interesting to observe that the corresponding result for a wide-spacing approximation to two-

dimensional modes trapped between two bodies is kc = -6/2 + nrr, and so there is a difference of
7r/4 between the two and three dimensional approximate values of kc.

Numerical location of trapped modes

The analysis of the previous section is only approximate and so it is not obvious whether the torus
can support trapped modes or whether it just has highly tuned resonances. In this section a method

is described which both demonstrates that there is a perturbation of the torus which supports a
trapped mode, and allows its accurate computation.

An exact axisymmetric trapped mode for a submerged torus is sought where, without loss of
generality, the potential 0 is assumed to be real. An application of Green's theorem to 0 and the
ring source gives 0 at an arbitrary point in the fluid in terms of an integral of 0 multiplied by the
normal derivative of the ring source around the boundary of the torus. This is then differentiated,

evaluated on the boundary of the torus and integrated by parts to give

J H(r(t),z(t);r(T),z(T))q(t)dt =4', 0 < < 27r, (5)

where q(t) = ~o¢/&s ds/dt. The function &q¢/&s is the tangential derivative of ¢ on the boundary
of the cross-section of the torus, (r(t), z(t)) are the radial and vertical coordinates of a point on
the torus, 4, is the unknown, real, constant value of the Stokes' stream function on the torus and

H(rz;rozo) - 2krkro (vsinvkz - cos vkz)(vsinvkzo - cos vkzo)Ii(vkr<)Ki(vkr>)
w Jo0 V2+1

- iTrkrkroek(z+zo) Ji(kr<)Hi(kr>), (6)

where J 1, H 1, I1 and K 1 are the usual Bessel and modified Bessel functions, r< = min(ro, r) and
r> = max(ro, r). In addition, to ensure zero circulation around the torus

j 1 q(t) dt = 0. (7)

The boundary of the torus is assumed to be smooth and so q(t) is approximated by a series of

trigonometric functions

2N

q(t) au,(t), where u 2n-1(t) = sin nt, u2 n(t) = cosnt. (8)

(The omission of the constant term ensures that (7) is automatically satisfied.) An application of
Galerkin's method yields a real homogeneous matrix equation for the coefficients {a,}

ZKmnan = 0, where Kmn = jj[e Re[H(r(t),z(t);r(7),z(T)]um(7)un(t)drdt,
n=1 0 J10

m =1,...,2N. (9)

In addition, in order to satisfy the imaginary part of (5)
2N 2 7r z 1

= 0, where fn kr(t)e Ji(kr(t) )u.(t) dt. (10)

n=1 fo

Thus, a trapped mode wave number is a value of k for which det(Kmn) = 0 and the resulting
eigenfunction satisfies the side condition (10).
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Results and discussion

Numerical calculations were performed for a submerged elliptical torus whose boundary is param-

eterised by

(r,z)=(c+acost,-d+bsint), 0<t<2ir. (11)

Computations for a submerged ellipse with b/a = 0.16 and d/a = 0.25 show that a zero of transmis-

sion exists at ka = 0.525 and the plane wave approximation predicts that a torus with c/a = 3.600

supports a trapped mode. Exact trapped modes are sought for an elliptical torus with the same
values of b/a and d/a and neighbouring values of c/a and ka. Figure 1 illustrates the curves

det(Kmn) = 0 and S _ fn= nn = 0 as functions of c/a and ka in the vicinity of c/a = 3.600 and
ka = 0.525, where the coefficients {f} are the coefficients in the cigenfunction for the eigenvaluc

of Km.... which has the smallest magnitude. At the point where the two curves cross S S and so

0.54

0.535

ka 0.535

det(Km,)=O

0.525

0.52
3.54 3.56 3.58 3.6 3.62 3.64 3.66 3.68 3.7

c/a

Figure 1: Crossing of the curves det(Kmn) = 0 and S 0 for an elliptical torus,
b/a = 0.16, d/a = 0.25.

det(Kmn) = 0 and S = 0 there. The two curves are generated by determining where real quantities

change sign and the fact that the curves cross rather than touch gives confidence that a trapped
mode exists, even though the values of ka and c/a may not be found exactly. Table 1 summarises
the trapped mode parameters obtained by this method for different values of b/a and d/a.

b/a
d/a 0.04 0.08 0.12 0.16 0.2 0.24

0.3 - - - - 4.22430 3.98209
0.48159 0.45113

3.96860 3.71152 3.62155 3.66547 4.21728
0.56043 0.56145 0.52627 0.45148 0.28664

02 3.25850 3.26333 3.33559 3.57864
0.65717 0.61093 0.53944 0.42465

015 3.03694 3.23079 3.75368
0.63019 0.52534 0.36853
3.31776 4.43568
0.47983 0.27962

Table 1: Summary of values of c/a (upper entry) and ka (lower entry) for trapping

by an elliptical torus for selected values of aspect ratio, b/a, and submergence, d/a.

- 111 -



Figures 2 and 3 illustrate the non-dimensional heave added mass and damping for a torus with
b/a = 0.16, d/a = 0.25 and c/a = 3.62155, calculated using WAMIT with a varying number of

panels. The panels are distributed at equal azimuthal angles and at equal values of the arc length
around the boundary of the torus. It is clear from the figures there is a large spike in the added

mass and damping at ka .:t 0.527 which supports the existence of a trapped mode at that value.

non-dimensional
added mass
1500 0(106) at ka=0.527,

il " 1024 panels
1000 j1ji

Soo i

-" 0.4 -" " 1 ka

-500

-1000

0(1 06)

-1500

Figure 2: Heave added mass for a submerged elliptical torus, b/a = 0.16, d/a 0.25,
c/a = 3.62155. Number of panels on 1/4 torus, *: 1920, -: 1024, 512, - - -:256

non-dimensional
damping
500

400 0(106) at ka=0.527,

4I 1024panels
300

200

100

I, ka
0.2 0.4 0.6 0.8 1

Figure 3: Heave damping for a submerged elliptical torus, b/a = 0.16, d/a = 0.25,
c/a = 3.62155. Number of panels on 1/4 torus, *: 1920, -: 1024, ..- : 512, - -:256
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Introduction

Trapped modes are free oscillations with finite energy of an unbounded fluid for which the fluid

motion is essentially confined to the vicinity of a fixed structure. In recent years it has been

discovered that such modes exist in the three-dimensional linearized water-wave problem and may

be supported at specific frequencies by certain 'trapping structures' [1,21. The existence of a trapped

mode at a particular frequency implies the non-uniqueness, or even non-existence, of the solution

to the scattering or radiation problem at that frequency.

Axisymmetric trapped modes in the presence of ax-

isymmetric structures may be constructed by an in-

verse procedure in which the main idea is to specify

an axisymmetric velocity field that decays at large dis-

tances, and then to seek stream surfaces that corre-

spond to rigid structures [1]. A time-harmonic circu-

lar ring source of radius c, and with a vertical axis of

symmetry, is placed in the free surface. There is no

wave propagation to infinity at the frequencies given

by Kc = jo,,, where K = w 2 /g, w is the radian fre-

quency, g is the acceleration due to gravity, and jo,n is

the nth zero of the Bessel function J0 . Axisymmetric

stream surfaces of this flow correspond to particular

toroidal structures intersecting the free surface which,

by construction, are able to support free oscillations of Figure 1: Perspective view of the submerged

the fluid; an example of such a structure is shown in fig- surface of an aisymmetric trapping structure.

ure 1. Subsequently, the construction was extended [2]

to give non-axisymmetric trapped modes in the presence of axisymmetric toroidal structures by

allowing the strength of the ring source, and hence the corresponding velocity field, to have a sinu-

soidal azimuthal variation. A hydrodynamic analysis has been performed for axisymmetric trapping

structures [3] and singular behaviour of, for example, the added mass and damping is observed in

the vicinity of the trapped-mode frequency.

The question arises 'Can non-axisymmetric trapping structures be found?'. The present work

answers this question in the affirmative and, in particular, it is demonstrated that non-axisymmetric

trapping structures can be constructed from an axisymmetric velocity field.

Construction of trapped modes

It is most convenient to work in terms of toroidal coordinates (r, 0, 0) with r > 0, 0 < 0 < 7r, and

0 < 3 < 27 [4], which are related to rectangular Cartesian coordinates (x, y, z) by

x=(c-rcos0) cos 3, y=(c-rcos0) sin/3, z=rsin0, (1)
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where c is the radius of a circular ring in the free surface (perhaps coinciding with a ring source as

described above), and z is directed vertically downwards with z = 0 corresponding to the mean free

surface. Thus, /3 is an azimuthal angle measured around the z axis and, in any vertical plane through

the z axis, (r, 0) are equivalent to plane polar coordinates with origin at R = (x 2 +y 2 )1/2 = c, z = 0.

As in previous work [1,2], a flow field is first specified in terms of a velocity potential

D(r, 0,/3, t) = 0(r, 0,/3) cos wt, (2)

where t is time and w is the radian frequency of the fluid oscillations. Let er, e0 , and eo be unit

vectors in the r, 0 and /3 directions respectively. With the time dependence removed, the velocity is

0¢ 1 ¢1 0¢
e, + 0-+e-- -e0 + rP (3)Or r190 c - rcos0 00e

and it is required to determined a surface r = r(O,/3) such that

Vo.n = 0, (4)

for all normals 1lOr 1 Or

- r r-o c-rcosO0/3

to the surface. In other words, the kinematic condition to be satisfied on a structural surface is

Or Or(6
q0-a-o+ q1-9 = qr (6)

where (g I 'g 1 (7

q r' r200' q = (c- r csO) 2 /3" (7)

Now for qo 4 0 equation (6) can be rewritten as

Or q,3Or qr(
,0 qo 90/ q0

so that
dr q, 

(9)dO q0
on the curves

do -- (10)

dO q0

The last two equations determine the so-called characteristic curves [5, Chapter II, §1]. Under

certain not very restrictive conditions, given an initial curve F in the free surface defined by r =

r(0, /3), equations (9)-(10) can be integrated from initial points (r(0, /3o), 0, /3o) on r to determine

curves that are everywhere parallel to the velocity field. Thus, given the velocity field and an

appropriately chosen initial closed curve F in the free surface, a stream surface can be generated by

simultaneous integration over 0 < 0 < 7r of the two first-order differential equations (9)-(10). For a

velocity field generated from a ring source that is singular in the free surface at R = c, a sensible

choice for F is a closed curve surrounding the origin and entirely within R = c.

For the special case in which the specified flow is axisymmetric, so that q' = 0, equation (10)

gives immediately that /3 is constant on any characteristic curve and it is sufficient to integrate (9)

to determine the characteristics. Although the velocity field is axisymmetric there is no requirement

that the initial curve F must also be axisymmetric. Thus, non-axisymmetric stream surfaces can

be generated from axisymmetric velocity fields!
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Stream-function approach

Another approach to the axisymmetric flow case is to express the given velocity field in terms of a

function 0 (r, 0, /3) so that

1 0¢1 04'
= r(c- rcos 0 ers 0) r(c; (11)

the particular form arises from the requirement that V20 0. For some constant C, a normal to a

surface S defined by
0(r, 0,/3) = C (12)

is
V¢ oe, + -- e + (13)

O r r90 c - r cos 090e(

and the construction ensures that V/ is perpendicular to VO everywhere on S, and hence S is a

stream surface of the flow. Given an axisymmetric velocity field, (11) can be solved to determine V);

this is probably best done in a different coordinate system. In most applications 0 is chosen to be

axisymmetric (and often called the Stokes' stream function) so that 4' is independent of /3 and the

surfaces S are also axisymmetric. This is the approach initially adopted in this problem in order to

generate axisymmetric trapping structures from axisymmetric velocity fields [1]. However, if

0 (r, 0,03) = IF (r, 0) (14)

is a particular solution to (11) then

O(r, 0, 0) = '(r, 0) + X(/3) (15)

is also a solution for any reasonable X(/3). In general, the surfaces S generated from (12) using (15)
are not axisymmetric.

An example of a non-axisymmetric trapping structure

Many types of non-axisymmetric trapping structures can be generated in the manner described

above. For instance, the structure shown in figure 1 can be distorted so that the inner and outer

radii are smoothly varying functions of the azimuthal angle /3. Here we present another example in

which sections of different radius are joined together.
The axisymmetric flow is specified in terms of the potential for a ring source of radius one. The

geometry of the structure shown in figure 2 is defined explicitly, in a manner described elsewhere [6].

Three 'patches' are defined in one quadrant as follows. Patch 1 consists of a partial torus with inner

waterline radius 0.2 restricted to the range /3 G (0, 7r/4), patch 2 consists of a partial torus with

inner waterline radius 0.3 restricted to the range /3 - (7r/4, r/2), and patch 3 is the portion of the

azimuthal plane/3 w= r/4 between the generating sections of the first two patches (planes of constant

/3 are also stream surfaces of an axisymmetric flow). After reflection about the planes x = 0 and

y = 0 a non-axisymmetric closed structure is formed, with the property that its surface coincides

with the axisymmetric stream surfaces generated by the ring source. The toroidal radial coordinates

of the generating sections for the first two patches are defined by economized polynomials of degree

10 in the angle 0. The maximum error in these polynomial approximations is 5 x 10-6.

Figure 3 shows the heave added-mass coefficient for this structure, computed by the program

WAMIT with quadratic B-spline representation of the potential and exact representation of the
geometry as defined by the above polynomial approximations. Three different results are shown,

with N=48, 108, and 300 unknowns in the linear system of equations, corresponding to subdivisions
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Figure 2: Perspective view of a non-axisymmetric Figure 3: Heave added-mass coefficient a33 , normal-
trapping structure. The dark lines show the ized with respect to the radius of the ring source and
boundaries of each patch and its reflections about fluid density vs. the wavenumber K.
the planes of symmetry.

N panels K 0  ja 3 3 1

48 2 x 2 2.430 374

108 4 x 4 2.406 4,440

300 8 x 8 2.4048 69,000

Table 1: Singular wave number K 0 and added mass a33 as a function of the number of unknowns N.

of each patch into 2 x 2, 4 x 4, and 8 x 8 elements. These results are computed in the range shown

using 102 closely spaced wavenumbers. In the vicinity of the singular wavenumber K = jo,1 - 2.4048
the increment is AK = 0.0001. The value K 0 of the wavenumber where the added-mass coefficient
changes sign and the maximum value of this coefficient are shown in table 1. These numerical
results give strong supporting evidence for the existence of non-axisymmetric trapping structures.
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1 Introduction

If a hydroelastic problem is linear the time-dependent motion can be found using spectral theory, at least theoretically.
However the spectral theory for linear hydroelasticity has not been developed, even for the simplest cases. For example,
the work of [I] which presented a method to determine the scattering frequencies for hydroelastic problems did not
develop any spectral theory. This has meant that spectral methods to solve the time-dependent motion, such as [4], have
only solved for the motion is restrictive cases.

In this paper the spectral theory for a simple hydroelastic problem, the two dimensional thin plate floating on shallow
water, is developed. This work, while it has practical applications, primarily aims to motivate the development of a
spectral theory for more complicated hydroelastic problems. Two separate methods are developed, both based on a
special inner product which represents the energy of the plate-water system. The first method uses the single frequency
solutions as the eigenfunctions and the problem is solved by a generalised Fourier transform. The second method is
based on Lax-Philips scattering and calculates the solution by an expansion in modes. These modes represent the natural
frequencies of the plate-water system and include the decay due to the radiation of energy into the surrounding water.

2 Formulation: A Thin Plate on Shallow Water

A thin plate of shallow draft covers the region -b < x < b of shallow water of depth h. The mathematical description
of the problem follows from [5]. The kinematic condition is

at( = -hO9xO [2.11
where 0 is the velocity potential of the water and 7 is the displacement of the water surface or the plate. The equation for
the pressure is S0, x € (-b, b),

- P9C( - POto D0x4( + p'da2(, x G (b, b), [2.2]

where D is the bending rigidity of the plate per unit length, p is the density of water, p' is the density of the plate, g is the
acceleration due to gravity, and d is the thickness of the plate. We also have the free edge boundary conditions

lim 9• = lim0. - lim = 1k - im&C = 0. [2.3]
xJ-b xTb xJ-b • b

Non-dimensional variables are now introduced. The space variables are non-dimensionalised using the water depth

h, and the time variables are non dimensionalised using -. The non-dimensionalised variables are

h'X t j and ¢ g/h

In these new variables, ([2.1]) and ([2.2]) become

01-K = -0•o [2.4]

and
0, x (-b4 ), [2.5]03911 + -Y , xe (-b, b),

subject to the boundary conditions
lira& lim_ 1inDa = limra& O . [2.6]
,- b XTb xL-b x4b

The non-dimensional variables 3 and 7 are given by

/3 p=D and -d
pgh4 ph'"

For clarity the overbar is dropped from now on. Following [3] we set the inertia term, -ya, to zero since it is much
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smaller than C. This follows from the fact that d < h and, since the water is shallow, the wavelengths (and hence the
frequencies) must be much greater than h so that O «( < .

3 The self-adjoint solution method

In this section, a solution for the time dependent motion of the plate-water system is developed using the theory of
self-adjoint operators. We define a two-component variable U (x, t) by

U (x,t) = (i•x,('t) )t " [3.1]

Equations ([2.4]) and ([2.5]) are now converted to the following equation for U

i tU = PU [3.2]

where
phr ( 0 1+,3(H(x-b)-H(x+b)) i4)

and H is the Heavyside function. Equation ([3.2]) is also subject to the boundary conditions at the end of the plate given
by equation ([2.6]) and the initial condition

U(x, t)=o = Uo(x) 0 (x) [33]

The operator P is self adjoint in the Hilbert space 7- with inner product given by the energy. The energy inner product
for the two vectors

U = i01 and U2 = 02

is
(Ul, U2)H = ( , 0•62ý + ((1 + ,3 (H (x - b) - H (x + b)) 0•) '(,i(2). [3.4]

The subscript R is used to denote the special inner product and the angle brackets without the h-i denote the standard
inner product

(f (x), g (x) f = f (x) g* (x) dx.

Since P is self-adjoint the solution to ([3.2]) can be calculated using the eigenfunctions of P. There are two eigen-
functions for each eigenvalue A E R, a unit incoming wave from the left (x = -oo) denoted by 4I> and a unit wave
incoming from the right (x oc) denoted by 4)<. The eigenfunctions 4> (A, x) consist of the two components O> (A, x)
and i(ý> (A, x) given by S-i•+Sii(A) ei;•, x<-b,

6

0> (A, x) = ajef(A')x, -b < x < b [3.5]
j=l

S12 (A)e-"\x, x > b,
and J Ae`\X + AS11i (A) ei\x, x < -b.,

i(> (A, x) = Fj (A)2 ajej(A)x, -b < x < b [3.6]

AS12 (A) e-iAX, x > b,
where pj (A) are the six roots of the equation

±Y6 +/_2 + A2 = 0 [3.7]

and the values of S11 (A), S12 (A), and aj are chosen so that O> (A, x) and (> (A, x) satisfy the boundary conditions
([2.3]) and the continuity of 0 and O6q5 at x = ±b. Also, since S11 represents the amplitude of the reflected wave and
S12 represents the amplitude of the transmitted wave, conservation of energy requires that ISIi 2 + S12 1 = 1. The
eigenfunctions for the wave propagating from the right 4)< are found similarly.

Since the boundary conditions are symmetric we must have S22 (A) = S11 (A) and S12 (A) = S21 (A). Also, the
scattering matrix

S(A) Si S1 (A) S12 (A) [3.8]
S 21 (A) S 22 (A) J

is unitary as a consequence of the Lax-Philips scattering structure which will be discussed in section 4.
Equation ([3.2]) can be solved by a generalised Fourier transform based on the eigenfunctions of the operator P. The

eigenfunctions are orthogonal since P is self-adjoint and the normalising constant is determined by calculating the inner
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product of these eigenfunctions with themselves. These inner products are given by

(4> (x, A1), D> (x, A2)), = 47r6 (A1 - A2) AI,

(4< (x, A1) 4< (x, A2 )),, = 47r6 (A1 - A2) A1, [3.9]
and

(4'> (x, A,), 4< (x, A2)),,, = 0. [3.10]
Using these eigenfunctions the solution to ([3.2]) subject to ([3.3]) is

U(Xt) i Uo (x) , '>(x,'2) V> (x, A) ei•AtdA [3.11]U~~t =Uo\ ) 47rA )

+ fiKUo (x), -D<(xA_ ) 4'< (<x A) ei"tdA"

4 The Lax-Philips Scattering Solution Method

In this section, a solution to the time-dependent motion of the plate-water system is developed using the Lax-Philips
scattering theory ([2]). This solution method will only solve for an initial condition which is zero outside the region
of water covered by the plate (Ial > b). The basic idea and consequences of the Lax-Philips scattering theory will be
outlined here for our specific problem. The Hilbert space 7R is decomposed into three subspaces called the incoming,
outgoing and scattering spaces. The incoming space, denoted by D-, consists of all waves travelling towards the plate,
either from the left or the right, as appropriate. The outgoing subspace, denoted by D+, consists of all waves travelling
away from the plate, either to the left or right, as appropriate. What remains is called the scattering region, and is denoted
by K. In our problem, K is nothing more than the potential and displacement under the plate.

We introduce a new operator 3 which describes the evolution of the plate in the absence of wave forcing. If we again
denote the motion of the plate by the two component vector U (x, t) ([3.1]) then the equation for the motion of the plate
in the absence of wave forcing is

I t U = BU.

This means that B is the infinitesimal generator of the semigroup (dissipative evolution operator) given by restricting the
problem to K, i.e.,

eitt = PK eiPt K

where PK is the projection onto the subspace K and the IK means that the input is restricted to K. Therefore e03 is the
evolution of an initial condition which is zero outside K and which is subsequently restricted to K, i.e. the evolution of
the plate motion in the absence of wave forcing.

The solution to the non self-adjoint problem requires the eigenvalues and eigenfunctions of 3, sometimes referred to
as scattering frequencies or resonances. The eigenvalues of 3 are found using the analytic extension of the scattering
matrix S (A) ([3.8]) to C since the eigenvalues of 3 occur precisely at the singularities of S(A). These singularities are
found by a complex integration search method to give a rough estimate and Newton's method to determine their location
accurately.

The eigenfunctions of B associated with the eigenvalue A,, are denoted by ])+(A,, x), and those of 3* (the adjoint of
3) associated with the eigenvalue A* are denoted by 4+ (A*, x). That is,

13(D+(A~,x) -A, (D+(A71, )

and
13*''+ (A*,x) -A*,$+ (A*,,x).

The eigenfunction D+ (A, x) is given by
6

+ Z: o!~ep3(,\OD+ (A,,x) 0 ( + (A, x) ( j=1 [4.1]i( (AX) = 6 _)Ce(A[I 2  [4.1X

E e~

where pj (A) are the six roots of equation ([3.7])

311j (A)6 + pj (A)2 + A2 = 0.

The aj are determined by the condition that the waves are of unit amplitude and are outgoing at x = b,
0+ (A., -b) = eiA,,b, O10+ (A,. x) I x=-b = iAnei)\,,b,
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and the boundary conditions at the end of the plate ([2.3]) are satisfied. The eigenfunctions of 13* are found similarly.
A biorthogonal system with respect to the energy inner product ([3.4]) is formed by the eigenfunctions of 13, 4)+ (A, ,x),

and the eigenfunctions of 13*. ý-+ (A•, x). To normalise the biorthogonal system, the inner product of 4?+ (A,, x) and
$+ (A, , x) must be found and this can be calculated analytically. Once this has been accomplished the evolution of the
plate from some initial displacement Uo(x) is given by

e Uo 1 (An, x) [4.21

where U0 (x) is the initial condition given by equation ([3.3]).

5 Summary

Two methods have been presented to solve the time dependent motion of a thin plate floating on shallow water. One
method was based on self-adjoint operator theory, and the other on Lax-Philips scattering. The Lax-Philips method only
solved the problem of a free plate and cannot be used to solve for wave forcing. The self-adjoint method solves both the
wave forcing and free plate problem. The eigenfunctions for the self-adjoint method are orthogonal and the eigenvalues
are continuous and consist of all R, which makes the calculation of the eigenvalues trivial. The Lax-Philips method has
discrete eigenvalues and the system of eigenfunctions is biorthogonal. The eigenvalues for the Lax-Philips method must
be calculated numerically, however the Lax-Philips method has the significant advantage that the modes of vibration of
the plate-water system and their frequency and rate of decay are found.
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Water entry of a perforated wedge
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1. Introduction
Since the pioneering works of von Karman and Wagner the water entry of solid bodies has received a
considerable attention.
In this paper we apply Wagner's approach to two-dimensional bodies which are perforated. This
problem has some relevance in coastal engineering, to study wave impact upon perforated breakwaters.
One may also conceive of using perforated shrouds as outer protections for other bodies subjected to
wave impacts, like the under-sides of the decks of offshore platforms, or for bodies entering the free
surface at large speeds.
Another reason to get interested into water entry of perforated bodies is that the jets that occur
through the openings directly reflect the extension of the wetted area, and that their velocities are in
proportion with the ambient pressures. With high speed cameras of appropriate resolution it should be
possible to quantify, in time, the locations and velocities of the jets. Comparisons between theoretical
and experimental results could then be easier than with solid bodies.

2. Formulation of the problem
The boundary condition on the wetted part of the entering body is inspired by previous work carried
out by the first author on the hydrodynamics of perforated bodies (Molin, 1992). It is assumed that
the flow through the openings results into pressure drops, which are proportional to the square of the
local traversing velocities (relative to the body surface). The relationship between pressure drops and
traversing velocities is taken in an averaged sense (over a large number of perforations), yielding:

- + 1-T-

P- -p+ = p 2T vI, (1)

where T is the porosity ratio (area of the perforations divided by total area) and p a discharge coeffi-
cient, usually close to 0.5.

Here we consider the initial stage of the water entry of a porous blunt shape into still water. Some fluid
leaks through the porous surface (as small jets through the openings), but the upper side remains at
atmospheric pressure. Equation (1) then reduces to the simple form (after linearization h la Wagner)

_ýt(x,O, t) = 1 -r (U + y(X 0, t))2 , (2)

where y = 0 is the initial level of the free surface, U is the vertical velocity of the body and -0(x, y, t)
is the velocity potential.

If the body is solid, then T= 0 and the boundary condition (2) resumes to the usual one: Dy = -U.
If the body is porous, then T / 0 and (2) can be interpreted as an evolution equation for 41,.

In the case of symmetric body shape, y = f(x) = f(-x), the boundary-value problem with respect to
the velocity potential has the form

A4 = 0 y<0

)t - a (U +± )2 Ip1 < c(t) = 0 (3)
- = 0 IxI > c(t) y = 0

V (-D 0 x2+y2_+ 0
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where a= (1 - r) /(2/ _2 ).
The wetted length 2 c(t) of the body is obtained from the Wagner condition of continuous joining of
the free surface and the surface of the entering body at x = ±c(t)

f(c) = Ut + 1j )(c,0,T) dT, (4)

where t = 0 is the impact instant and ). (c(t), 0, T) is the vertical velocity of the free surface at the
time instant T at the point x = c(t).

3. Self-similar solution for a porous wedge
We consider the case of a wedge, with deadrise angle /3, entering vertically the free surface with
constant speed U. The self-similar problem is derived by introducing the non-dimensional variables:

x =-Y UtX y =-Y UtyY (D = _YU2 t O(X, Y) c= -Y U t. (5)

In the stretched variables the boundary condition on the wetted part of the wedge (2) and the Wagner
condition (4) take, respectively, the forms

SX-Xx=_-a (1+¢Y)2 IXI< 1 Y=0, (6)
-y

tn =1+ OY (u,0) dL. (7)

The numerical difficulties mostly reside with the nonlinearity of equation (6), and with the fact that
^' is not known a priori. To overcome them, an iterative resolution method is used with equation (6)
being presented as

01n)-1 _, n • X(8)+ n 1) n
- X + () (2 ± Y~) (8)

This means that an equation of the type

q - X Ox + f(X) Oy = k IXI < 1 Y=0 (9)

has to be solved at each iteration.

This scheme turned out to be efficient for small values of the parameter a tan /3. At large values of
the parameter it is more expedient to reverse equation (6), writing it under the form

6y = -1 + 2 (X Ox - 0) (10)
a

and to solve it iteratively through the scheme

Y ((yn) ___ - + V/,(-n-1) ( n ¢ -1) _ ( -) .11

The choice between either iterative scheme is decided upon the value of the product a tan /3. When
a tan /3 is smaller than 1, the first scheme is used. When it is larger than 1, the second one is followed.

To present preliminary results, we use a very crude numerical method. That is, we bound the domain
at some distance X = ±L and use eigenfunction expansion of the potential

N

0(X,Y) = E An cos AnX enY (12)
n=1

in the region -L < X < L and -co < Y < 0, where An = (2 n - 1) ir/(2 L) so that 4)(±L, Y) _ 0.
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Figure 1: Porous wedge. cot /3 10. Free surface elevation obtained from self-similar solution for
a = 1, 4, 16, 64, 256, 1024 and for a solid wedge.

A Galerkin procedure is then followed to build up a linear system which is solved by a standard Gauss
routine to yield the A, coefficients. This procedure is repeated until convergence, which is always
attained within a few iterations.
When convergence has been reached the free surface position in the self-similar variables is given by

1 X / __0) 1 N C

E(X) - x du = A X dv (X > 0). (13)
'y J 2l n=1 -"x x7

The free surface elevation 7(x, t) is related to E(X) through

71x-t -y U t E t

Finally the vertical force on the porous wedge is obtained as

Ay=-p d 0j P(x,0,t) dx -2py 2 U3 t ¢(X,O) dX =4p 2 U3 t N (-1)A, (14)
f .- C n=1

In the case of small porosity, T K< 1, the iterative scheme (11) can be followed to derive the asymp-
totic behaviour of the solution. Then it is found that the ratio fy(T)/fy(O) (that is the force on the
porous wedge divided by its value for the solid one) behaves as 1 - b/-y/a, where b = 1.113, and

the quantity -y is r2 a[[va 2 + 27watanf+±a]- 2 , where a = 0.712, for large values of the product atano.

We first present results for a wedge with a deadrise angle 0 such that cot 3 = 10. The half-length L
of the numerical domain is taken equal to 8 and the truncation order N of the series (12) is N = 800.
Figure 1 shows the free surface elevation -y E plotted versus -y X (that is 1(x, t)/(U t) plotted against
x/(Ut)), for different a values: a = 1, 4, 16, 64, 256 and 1024 (or, roughly, porosity ratios of 62, 39,
22, 12, 6 and 3 %). As the porosity increases, the profiles of the liquid surface (inside and outside of
the wedge) are getting smoother and the points of maximum elevation move inside the wedge.
It should be noted that the profiles obtained inside the porous wedge reflect the (locally) averaged
amount of water that has leaked through it. The actual elevations of the tips of the jets that have
flowed through the openings are given by

?7j(x, t) =('7 tan 1-)-X +• " 1 -1 I-r-+ E(x

T 12 -Ut LYUt
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Figure 2: Porous wedge. Wetted length ratio y(T)/,y(0) as a function of the porosity ratio T, for

different deadrise angles.
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Figure 3: Porous wedge. Vertical force ratio fy(T)/fy(O) as a function of the porosity ratio --, for

different deadrise angles.

The profiles related to a solid wedge (a = cc) are also shown, as obtained analytically and with the

proposed numerical method; it can be seen that they are in fair agreement.

Then we give results relative to three deadrise angles 0 such that cot 3 takes the values 10, 20 and
40. The discharge coefficient p is taken equal to 0.5. Figure 2 gives the wetted length ratio -y(T-)/'Y(0)
for porosity factors T ranging from 0 (solid wedge) to 0.5. Figure 3 gives the vertical force ratio
fy(T)/fy(O). Also shown on these figures are the values provided by the asymptotic expressions given
above, with a fair agreement at low porosity ratios. It can be observed that a porosity of 10 % reduces
the force by a factor of 3 for the flattest wedge, as compared to the solid case. With 20 % porosity
the reduction factor comes up to 7.

Reference
Molin B. 1992 Motion damping by slotted structures. In Hydrodynamics: Computations, Model Tests
and Reality, Developments in Marine Technology, 10. Elsevier.
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Waves Generated by Ship Motions

M. Ohkusu
Research Institute for Applied Mechanics, Kyushu University, Japan

1 Introduction

I am interested in seeing actual radiation waves or diffraction waves of ships at constant forward
speed. One reason is that the wave pattern of those waves, let alone the quantitative information of
the contour of the wave pattern, is not visible at usual tank test; the Kelvin wave pattern and the
incident waves prevent us from seeing them. It is interesting not only for its own sake ( for example

Cao, Shultz and Beck (1994)) but practically; the damping of ship motions and added resistance in
waves are direct results of those waves. My second interest is to know if our theoretical methods are
capable of predicting accurately the contour of the wave pattern of radiation and diffraction waves.

This will be a crucial issue in studies of ship motion theory.
Purpose of my study is to visualize instanteneous contour of the dynamic radiation wave pattern

measured at tank test and to compare the measured contour with the one theretically predicted.

2 Computarized measurement of the wave contour

Our technique is able to visualiza the instanteneous contour of unsteady free surface elevation around
a ship model moving at forward speed and oscillating at a frequency. Idea of this technique is briefly
described below (see Ohkusu and Wen (1996) for the details ). Wave is recorded with several wave

probes continuously during a run of the experiment; their locations are fixed to the water tank and set

on a line paralell to the ship model track with an equal distance between the neiboring probes. The
wave probes move relatively in the reference frame fixed to the average position of the ship model (
the ship reference frame) as it runs at a constant forward speed U. The wave probes reach an identical
position P in the ship reference frame at different time instants. Adopt the wave record of each probe
at the time instant when it reaches the location P, then we have wave records at a location P at sveral
different time instants. Those wave records will determine (o(x, y) (the Kelvin wave ), (i(x, y) (the
fundamental harmonics of the radiation wave ) and ( 2(x, y) ( the second harmonics ) of the total wave
elevation around the ship model ((x, y, t):

((X, y, t) = ( 0 (X, y) + 1 I(X, y)ciwt -e + 2 (x, y)ei 2wt + (1)

The wave probes record the wave elevation continuously and consequently the determination of (0,1,2
will be done at any location on the line i.e.we can determine the steady wave elevation and the
amplitude and phase of the unsteady wave elevation everywhere on the line at a distance from the
ship model's track. This process is feasible by the computer involvement.

The measurement is repeated at another line of the wave probes with different distance from the
ship model's track. Repeatability of the measurement is confirmed and accurate contour of the waves

(lCiwt and (2eiwt are constructed by the results obtained when we repeat this many times.

One example of snapshots of the contour of the first order wave elevation (leiwt and the second
order's one (2ei2Wt ( all are normalized by the amplitude of the vertical motion at FP )are shown on
the last page of this report. They are for S175 model forced to pitch at 7- = wOU/g = 1.446 and the
amplitude of about 2.2' ( the amplitude of the vertical motion at FP is about 30 percent of the draft
) towed at the Froude number F, = 0.275. It is concluded from the results of experiment at two
different amplitude of pitch that (I is certainly the first order wave elevation and (2 the secodn order
wave ( even if some other order effect is included, it will be very small ). The upper part of the first
order wave is the wave contour at wt = 0 and the lower part the wave contour at wt = 7r/2. For the
second order wave, the upper is at 2wt = 0 but the lower at 2wt = 7r/2.
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One wave system significant in the first order wave pattern: the wave peaks are on a diagonal
line emanating from the ship; the diagonal line makes about 210 with the ship's track. This angle as
well as the " wave lenght " of the peaks is in agreement with that of the asymptotic wave pattern
of the longer wave component ( k2-wave ). Two wave systems will be seen in the second order wave
pattern. One is on a diagonal line of the angle 21' which is the same as in the first order k2-wave.
Other is on a digonal line of 13.50 which is the angle of the asymptotic k2 wave pattern if we assume
the frequency of the motion as 2w and the linear dispersion relation.This is true in terms of the wave
length of the peaks on the diagonal line. The former wave system is interpreted by an analogy of the
Stokes waves as the bound wave component mainly resulting from the nonlinerity in the free ayrface
condition and the latter the free wave component due to the body nonlinearity. It must be discussed
in the comparison with the theoretical prediction.

Another significant result seen in the wave contours is that the second order wave elevation is as
large as 25percent of the first order wave elevation. This will be discussed in terms of the theoretical

prediction.

3 Theoretical prediction

We assume that the steady flow around the ship is uniform flow U into the x direction. Another
assumption is that two small parameters, the slenderness parameters e and the motion amplitude 5,
are independent of each other; when we are concererned with, for example, j2 terms, we retain the
terms of the lowest order with respect to e.

We may assume the derivative of any flow quantity f in the x direction is higher order than the
derivatives into the y and z in terms of E. Yet we retain UOf/ax in the free surface conditions
because of high speed U of the ship. As a consequence we may employ 2.5D approach. One way is
to analyze fully nonlinear flow and to take w and 2w components to compare with each component
of the measured wave field presented in the previous section. However here our analysis is rather by
classical perturbation expansion in terms of 6. It is for better understanding of the behavior of the
second order wave elevation separately and the convenience of direct comprison with the measured
wave pattern of the second order. Velocity potentilal 4 and wave elevation ( will be written in the
form

S=01 + 02, (=1 +(2

Here we consider that the terms 02 and ý2 are of higher order than the first terms with respect to J.
From now on we are concerned only with the oscillatory part of the flow i.e. we understand hereafter

that 01,2 and (1,2 represent the oscillatory parts of the flow. Our analysis is in the frequency domain
and everything of the first order is oscillating at the frequency w. Then it is readily shown that we
may put

Oi(xIyIz) = Oj(x,y,z)e-iix/U iiwt, (j(X,y,Z) = 71j(x,y,z)eiiz/v+iit j = 1,2 (2)

Substitution of those expressions into the first and second order free surface conditions respectively
will derive the conditons for V)1,2 and 771,2 on z = 0

=Ulx = -gql, Uqix = 01. (3)
U 12 2 1

U02x -= -g9M2 - 2 70lzx - 4(¢y + 0z), U?72x = 02z - 2Oly?7hy - 71zz (4)

Subscripts x,y and z denote the differentiation into the respective direction. In deriving (4) we have
retained the lowest order terms of E among the terms of 62. The same reasoning leads to the govering
equation in fluid

yy +Ozz =0 j =1,2 (5)
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The body boundary conditions are derived in the same manner based on the same assumptions.

iln -6[(x - xo)iw + Fn]nzeiwx/U (6)

=2n 0.5j 2 (X - xo)nziizei2wx/U (7)

The body conditions (6) and (7) are both imposed on the surface of the ship at the equilibrium position.
n is the normal directed to the fluid on the ship's sectional contour and n, is the z component of the
normal. x0 is the x coordinate of the longituidinal center of mass around which the pitch motion is
defined. The formulation above is under the condition that the ship form is wall sided i.e. the hull
surface intersects vertically the z = 0 plane.

Equations (4) and (7) suggest that b2 and r/2 will be decomposed into two parts, one part satisfying
the homogeneous free surface conditions corresponding to (3) and the body condition (7), and other
part sastisfying the free surface condition (4) and the homogeneous body condition (7) with the right
hand side replaced by 0. The former will be understood as the free wave part due to the body
nonlinearity and the latter the bound part due to the free surface nonlinearity.

Numerical implementation of this approach for ¢1 is straightforward and well known. The 2nd order
Runge-Kutta scheme was used to forward the solution from one section to next section; behavior of
01 on z = 0 away from the body surface ( jyj > 0.5L) is approximated by vertical dipole behavior;
intial condition at the bow x = 0 for the marching is 01 = 711 = 0 ( This must be improved in future
while it doee not have a serious effect with a slender hull form of S175 ).

After 01 and 771 are obtained, we solve for 02 and 172 in almost similar manner. Equations (4) is
integrated to forward 02 and '02. We need to evaluate the forcing terms due to V$' and ql on the right
hand side. We must rely on numerical differentiation for evaluating 01zx for ¢bz given on z = 0. We
evaluated '1bzz by solving a new boundary value problem for 01, when OPz is prescribed on both the
ship section and the free surface.

The condition imposed for 02 at large jyj is determined as follows. The forcing terms bahavior at
large IyI are known because V$j bahves as a vertical dipole. For 'b2 we assume the slowest attenuation
expected from the forcing terms on the right hans side of (4) at large IyI i.e. the same behavior as 01.

Numerical treatment of the singularity of the velocity potential at the intersection of the body
surface and z = 0 will be crucial for the computation of the second order component, which will be
discussed at the Workshop.

Wave elevation computed by this approach is compared with the measured wave elevation presented
in the previous section. The predicted of the first order wave contour is apprently in good agreement
with the measured but not quantitatively with the second order wave contour. The details of the
results will be presented at the Workshop
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A Panel-Free Method for the Time-Domain Radiation Problem
W. Qiu1 and C.C. Hsiung2

1 Martec Limited, CANADA
2 Centre for Marine Vessel Development and Research, Dalhousie University, CANADA

1. INTRODUCTION

Based on the desingularized Green's formula of Landweber & Macagno (1969), a method has been developed to
solve the radiation problem of a floating body in the time domain. In this method, the singularity in the Rankine
source of the Green function is removed. The body surface is imathematically represented by Non-Uniform Ra-
tional B-Spline (NURBS) surfaces. Thus, the integral equation can be globally discretized over the body surface
by Gaussian quadrature. We call this method as the panel-free method (PFM). The accuracy of PFM based on
the NURBS surface representation was demonstrated by its application to a classical problem of uniform flow
past a sphere. Computed impulse response function, added-mass and damping coefficients of a hemisphere at
zero speed are compared with other published results.

2. MATHEMATICAL FORMULATION
For the radiation problem of a floating body with forward speed U0 in the time domain, the potential function,

O(P; t) can be represented as a source distribution as follows:

0(P; t) dT J G(P, Q; t - T)a(Q; -r)dS + -g dTfnlG(PQ;t-r)a(Q;T)dl (1)

where Sb is the mean wetted surface, F denotes the waterline, nm is the x-component of the inner unit normal
vector n which points into the body surface, and the time-dependent Green function is given by (Wehausen &
Laitone 1960, Eq. (13.49)):

G(PQ;t- T) r - )6(t - r) + F(P, Q; t - T)H(t - -r) (2)
47r' r r

with
F(P,Q;-t--) = -- j 1 _ksin[ gk(t _ T)]eku+• ).J0(kR)dk (3)

where r and r, are distances between P(x, y, z) and Q(x',y', z'), and P and the image point Q' of Q, R =

v/(x x)2 + (y - y,)
2

, Jo is the Bessel function of the zeroth order, and 6(t - r) and H(t - r) are the delta
function and the Heaviside step function, respectively. The source strength, a, can be solved from

P(P;t) = -t (P;t)+ dT Qt-T) 2 + -- t oG(P, Q; t -7-) oa(Q; r)dl (4)

2 1 'Sb 1an(p) 9 1 1 an(P)

For a floating body, if the waterline integral is omitted, Eq.(4) can be desingularized as follows:
V,(: )J. [ . . OGI (P, Q) t)c9Gt(P, Q)I

V,(P-t) =-0(P;t) +J [0(Q; t) O i a(P;t) dS (5)~~~~~np .9nG(PQo-n•p fo FPQt( Q)

+2f o'(Q;t) %2WQ)dS + dT F(PQ;t- 7) a(Q; T)dS
S, O() f fb nP

The LHS of Eq.(5) is known from the body boundary condition, and G, (P, Q) = -1/(47r)(1/r + 1/ri) and
G2 (P, Q) = 1/(47rrr). The source strength can be obtained by solving Eq.(5). Based on the work by Landweber
and Macagno, the non-singular representation for the velocity potential can be derived as follows:

G(P;t)=f Gi(P,Q) 0(u(Q;t) T-- -jdS+2J a(Q;t)G2 (P,Q)dS + 1 o0Pt)7() (6)

- 129 -



+f dT u(Q;,)F(PQ;t-7)dS

where -y(P) is the source distribution on Sb which makes the body surface an equipotential surface of potential
00 and satisfies the homogeneous integral equation

1 (P) = h (Q) aK(PQ) dS (7)
an(P)

Equation (7) can be desingularized in a similar way as Eq.(5), and -y(P) can be solved by finding the eigenfunction
of DK(P, Q)/On(P) with the eigenvalue equal to 1, where K(P, Q) = 1/(27r)(1/r + 1/ri). The potential, Oo, is
constant in the interior of the equipotential surface. It can be computed at the origin by Oo = - fs, 7(Q)(1/IQI +
1/IQ'I)dS, where IQI and tQ'I denote distances between Q and the origin, and Q' and the origin, respectively.

3. NUMERICAL IMPLEMENTATION

It is assumed that Np patches are used to describe a body surface. Each patch can be represented by a NURBS
surface (Farin, 1991). Let P(x(u,v),y(u,v),z(u,v)) be a point on a patch; x,y and z denote the Cartesian
coordinates; and u and v are two parameters for the surface definition. On a NURBS surface, P(u,v) can be
defined as follows:

EP, E' 0 WijCi,jNi,p(U)Nj,q(v)P(u, v) = •i=o •jmow= i•(~jq (8)
En= 0 Em 0 W~j N, (u) Nj"(v

where wij are the weights; Cij form a network of control points; and Ni,p(u) and Nj,q(v) are the normalized
B-splines basis functions of degrees p and q in the u and v directions, respectively.

Since Eq.(5) is singularity free, it can be discretized by directly applying the Gaussian quadrature and the
trapezoidal time integration scheme. The Gaussian quadrature points are arranged in the computational space,
rs, then their corresponding coordinates, normals, Jacobian in the physical space can be obtained based on
Eq.(8). Therefore, the Eq.(5) can be written as

Alp Nj Mj
V•(Pj;t) = -a(Pi;t) + Z wrws [o(Q8 ,t)VpGi(Pi,Q) -.np, +t(Pi;t)VpG,(Pi,Q 8 ) Js (9)

j=1 r=l s=1

Np Nj Mj

+2 E Sw wrw,(QS; t)VpG2 (P,. Qr,) " np, Jlj
j=I r=1 s=1

+ t NE 5V' OQ 0F t) k,-I Np Nj M &F(P, Qj;t - tk)5 555 ~W~ QQrs. tkJsj=1 r=1 s=1 k=1 j=1 r=1 s=1 I

i = 12 ..N

where Nj and Mj are the number of Gaussian quadrature points in the u- and v-directions on the jth patch.
Pi = Pi(u,, vm), n = 1,...Ni, m = 1,...Mi and Qs = Qj(u,, v,) are the position vectors of Gaussian quadrature
points on the ith and jth patches in the physical space, respectively; np. and n.q- are the corresponding unit
normals; w, and w, are the weighting coefficients in the u and v directions; j" is' the Jacobian of Q7; t is the
time; and At is the time step, tk = kAt and t = ktAt, where k and kt are the time constants at any instant and
for the total time, respectively. It can be seen that the algorithm is only controlled by the number of Gaussian
quadrature points.

4. NUMERICAL RESULTS

Since the singularity occurs only in the 1/r term, it is important to validate the desingularization of the integral
equation with the 1/r term only before it is applied to the time-domain integration. The numerical scheme was
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applied to the problem of uniform flow (U = -1.0) past a sphere surface (R = 1.0). Due to the symmetry, only
one-half of the surface was considered. In Figure 1, the dashed lines represent the control net of NURBS with 5x5
control points on one of patches (Np = 2). The solid meshes are the surface of one-quarter of the sphere generated
by the control net. The disturbed velocity potentials at the Gaussian quadrature points were computed using
both NURBS and analytical expressions of the surface. The numerical testing was also conducted to investigate
the convergence of numerical solution to the number of Gaussian quadrature points (NxN) over the hemisphere.
The root-mean-squared (RMS) errors of computed velocity potentials based on the analytical expression and the
NURBS representation of the surface are shown in Figure 2. It is shown that the computed velocity potentials
converge to the analytical solution as the number of Gaussian quadrature points increased. The RMS error of
the solution based on the NURBS representation is less than 1% when 10x10 Gaussian quadrature points are
applied.

The panel-free method was applied to compute the response function for a hemisphere (R=5.0m) in heave.
Figure 3 shows the nondimensional response function, K 33 (t)/(pV) VRg, versus nondimensional time, t v/R,
for different Gaussian quadrature points used on the hemisphere, where R is the radius of the sphere and V is
the volume displacement. The time step was chosen as 0.05 second. The circle points give the analytic solution
of Barakat (1962) obtained by the Fourier transformation from his frequency-domain results.

The nondimensional response function for the heaving hemisphere was also computed using different time steps
with 16x16 Gaussian quadrature points. As shown in Figure 4, PFM is insensitive to the size of time steps.
Figure 5 and Figure 6 present the added-mass and damping coefficients versus the nondimensional frequency
for the hemisphere in heave. The numerical results were obtained by Fourier transformation from the response
function using 16x16 Gaussian points as shown in Figure 3, and the analytical results were from Barakat (1962).
Also in these figures, the frequency, the added-mass and the damping coefficients are nondimensionalized as
w 2R/g, A33/(p!7rR 3 ) and Ba33 /(wp-irR 3 ), respectively.

5. CONCLUSIONS

The panel-free method has been developed to solve the radiation problem of a hemisphere at zero speed in the
time domain. The boundary integral equation in terms of source strength distribution is desingularized so that
the Gaussian Quadrature can be directly applied to the exact body surface. Compared with the panel method,
the advantages of PFM are: a) less numerical manipulating, since panelization of a body surface is not needed; b)
more accurate, since the assumption for the configuration of source strength distribution as in the panel method
is not needed and no approximation of surface geometry is involved; c) the Gaussian quadrature points, and their
respective Jacobian and normals on the surface can be accurately computed from the NURBS expression; and
d) the accuracy of the solution is controlled only by the number of Gaussian quadrature points. This method is
currently being applied to the computation of ship motions in the time domain. The wave diffraction effect is
also considered.
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THE PELAMIS WAVE ENERGY CONVERTER: IT MAY BE JOLLY

GOOD IN PRACTICE, BUT WILL IT WORK IN THEORY?

R.C.T.RAINEY WS Atkins Oil & Gas, Berkshire House, 171 High Holborn, London WCIV 7AA

1. Background
The design of wave energy converters (WECs) has hitherto concentrated primarily on hydrodynamic efficiency, see the
1985 review by David Evans [1] (1985). The Pelamis WEC is a promising new concept which is designed instead
primarily for survival in extreme seas. This is accomplished by its end-on orientation to the waves, which enables the
WEC negotiate breaking waves safely, and by its relatively small diameter (3.5m), which non-linearly limits power
output in extreme conditions. See Figure 1 below - further details are on the website www.oceanpd.com.

Figure 1. The Pelamis wave energy converter

The power take-off is from hydraulic jacks at the articulated joints - the hydrodynamic efficiency of the device has been
optimised empirically, by extensive model testing and numerical modelling. It has been found that the efficiency is
greatly improved by making the transverse motions resonant (by suitable choice of transverse stiffness at the joints), and
coupling them to the vertical motions (by introducing suitable coupling terms in this stiffness). All this may be excellent
in practice, but will it work in theory?

2. The waves generated by a single segment in isolation.
The theory of wave power absorption is concerned with the waves generated by the WEC. For a single segment of
Pelamis in isolation, these may readily be found with a 3-D diffraction program. Figure 2 below shows a surface element
mesh generated by the WS Atkins program AQWA-LINE (which gives substantially identical results to MIT's program
WAMIT, see [2]). The segment is 3.5m diameter, 30m long with uniform density, and floating freely exactly half
immersed in water of infinite depth (and density p 1.000 tonne/m 3 with g = 10.00 m2/s).

S~0.100o0.
thetaavel

0.0500 -

A 0.0000 1------------------------------------

-0.0500 -,~r

-0.1000-

-0.15000 - - -- - - - - - - - - ------ - - ----- - -

theta

Figure 2. Analysis of a single segment with the diffraction program AQWA-LINE.
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Figure 2 also shows the amplitude of the various waves produced by the segment. In this paper we characterise any

waves propagating away to infinity by the complex function A(O), from which the elevation of the waves at great
distance is defined as:

A(O)ae"'_R-c}0 (

This is because in the polar coordinates (R, O) these waves will ultimately decay inversely as the square root the distance

R from the centre of the device, by energy conservation. The incident waves are assumed to travel in the direction 0 = 0

in the sense of increasing R, and to have angular frequency coand wave number k. Finally a is the complex amplitude of
the motion responsible for the waves of(l). Thus when we consider free-floating behaviour in incident waves, Njae-I

is the elevation of the incident waves at the centre of the segment. And when we consider heave motion in still water

N{aei"} is the heave motion (positive upwards).

Figure 2 gives results (diffracted and difffracted+radiated waves) with the segment in incident waves 150m long (i.e. as
long as all five segments of Pelamis combined) and also for heave motion in still water, at the same frequency. In the

first case the diffracted+radiated waves are much smaller than the diffracted wave alone, so the segment is following the
incident waves like a small raft, so as to be almost transparent to them. For the heave motion the waves are almost equal
and opposite to the diffracted waves. Since the heave motion in waves is almost equal to the incident wave elevation
(94% of its amplitude according to AQWA-LINE, and within 0.02 degrees of its phase), we may deduce that in the
former case it is the waves radiated by the heave motion that are cancelling the diffracted waves.

Theoretically ([3] eqn 24b), A(O)a for heave motion is equal to -idt(O))e" 4/g, where H(O) is the 'Kochin function' ([3]
eqn 17). In our case of long waves H(O) may be approximated without difficulty as -k(-iot7)B, where B is the waterplane

area of the segment. This leads to a value of A(0) = k2Bea 4, which is shown in Figure 2, and agrees correctly with the
computations. See also [4] eqn 10 - the more sophisticated slender-body approximation there will in fact recover the a-
dependence seen in Figure 2. For present purposes it is sufficient to observe that this dependence is small, and that the
amplitude of the waves radiated by heave motion is proportional to the waterplane area B.

3. Energy flux in the far field: single segment
Hitherto the segment has been floating freely; we are now in a position to assess the effect of incorporating a power

take-off so as to extract some wave energy. We will depart from the earlier literature cited above by considering the
energy flux in the far field directly. Since the freely-floating segment is practically transparent to the waves, and the only
significant wave radiation is from heave motion, we will take the far field waves produced by the segment (the
'produced waves') as being simply those due to the additional heave motion compared with the freely-floating segment.

Thus in (1) we will take 9{ae-'¶ is this additional heave motion (positive upwards), and denote the incident wave

elevation at the centre of the segment as _W{be•°*}.

The mean energy flux in the far field is the product of the wave pressure and the wave velocity, integrated over a fixed
cylindrical control surface where R has some large value Rc, say. The product of wave velocity and hydrostatic pressure
does not count because it is purely oscillatory, and the flux of kinetic energy does not count because it is of higher order
in wave height. The mean value of the product of any two complex oscillatory variables a and b is '/2½'(jb), so if the
incident and produced complex wave pressures are p, and pp, and their complex velocities into the control surface are v,
and vp, the mean energy flux into the control surface is:

9(Pl +Pp)(Vl + vp) 2k(2

Here the variables are taken at the still-water position, the depth integration having yielded the factor 1/(2k). We now
observe that:

"* The plv1 term must integrate to zero because there is zero mean energy flux from the incident waves alone

"* The ppvp term must always give an energy loss because the produced waves are leaving the system
"* The cross terms must therefore be the source of any energy input
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Dealing with energy loss term first, and taking A(0) = k2Be""4 as above, this is readily integrated as:

)l{{o k2Baei(kR-R+T/4) aDi(kR+r/4)} R - - g 2B2 2 al.gic2B2a 2  (3

I2k.tedcRW )} R dO _ J _ dO = - p c 2 3

The energy input form the cross terms is:
-r 2Ba (kRc+T/14) k 2Baei(kRc+,/ 4 )

(P kcos6)(_W ) + (P )(-aheik"ýCOOB COS 0)}R,
-I2 VFRR VS 2k

2•-g a (I + COSO)ei(kR0[l"-cos0]+f/4)d} (4)

The integrand in (4) is plotted in Figure 3 below for kR=30.
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Figure 3. Angular dependence of input energy flux Figure 4. Angular dependence of energy loss, 5 segments

The mean energy flux evidently fluctuates rapidly around the control surface, with the significant peak being at 0 = 0,
i.e. downwave of the segment. This is because at that point the produced waves are travelling in the same direction as
the incident waves, so that the total energy flux is proportional to the square of their combined amplitude. Depending on
their relative phase, this is either greater or less than the sum of their individual amplitudes squared, so requiring a
substantial cross term. At 0 = ±_+, on the other hand, the integrand is zero because the waves are travelling in opposite
directions, and their total energy flux is thus equal to the sum of their individual fluxes (as is well-known, and can be
seen from (2) given the opposite directions of the velocities under wave crests). The required integral can be found
exactly by the method of stationary phase ([5] art 241). Only the energy flux around 0 = 0 is significant to the integral,
and (4) becomes:

pgoB {} _ g 9R{iba} (5)
2 2

For any given I a 1, the energy loss term (3) will be fixed, so we are at liberty to choose the phase of a as equal to that of
ib, so as to maximise the energy input (5). The net energy input will then be:

pgcoB bl -Pg a*'B'Ja1 = PgaB (2f bIIaI - k 2 BjaJ) (6)
2 4~a 4

The energy input term is proportional to a whereas the energy loss term is proportional to I a 2, so the maximum net
energy can easily be found to occur when I a I = I b I /(kB) and to be:

pgo)B (21bf _Lj j -Fpob
2 lk-1 (7)

4 "kB k2B) L 4k (
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Since the term in square brackets is the incident energy per unit length of wave crest, we have recovered the well-known
result (e.g. [1] eqn 4.2) that the maximum crest 'capture width' is k-1 for a device radiating waves equally in all
directions. However, this requires I a /I b I =(k 2B)- = 5.4 in our case - since I a I is limited to about I m, this limits the
wave amplitude at which this 'capture width' can be achieved, to about 20cm.

4. Energy flux in the far field: complete device
So far there is nothing new in these results. However, Figure 3 and the argument below it suggest that the design
objective for the complete device should be to produce waves concentrated on a downwave direction (0 = 0). This will
maintain the energy input, which only depends on the waves produced in a downwave direction, while reducing the
energy loss which depends on the waves produced in all directions. For example, an effective strategy would appear to
be to arrange the additional heave motions of each segment considered above (i.e. the heave motions compared with
freely floating segments - the segments will be transparent to the waves produced by other segments, just as they are to
incident waves) to be phase lagged between each other in the same way as the incident wave itself The waves produced
by each segment will then interfere constructively in a downwave direction, but interfere destructively in the upwave
direction. Given the five 30m segments exactly spanning a 150m wavelength, with the centre of the central one at R=O,
the complex amplitude will in fact vary with 0as:

e-i0.81r(1-cos0) + e-i0
4

zr(
1
-c0s

0
) + 1 + eiO 4r(-cosO) + e'S'(1-cOsO)

= I + 2 cos(0.4,r[1 - cos 0]) + 2 cos(0.8z[I - cos 0]) (8)

As far as the energy loss integral (3) is concerned, it is the variation of (amplitude)2 with 9 which counts; this is shown
in Figure 4 above. For the same energy input, numerical integration shows that the energy loss is about one third of a
single segment, which will increase the 'capture width' to about half a wavelength. Given the larger waterplane area of
the complete device, moreover, the limiting wave amplitude is increased from 20cm above to 35cm. In waves of 3.5m
amplitude, say (i.e. 7m height, which is quite steep for the given 150m wavelength), the capture width will reduce to
about a tenth of a wavelength. This is consistent with the measured performance of the Pelamis WEC. The required
large heave motions are achieved in practice by the coupling to a resonant sway mode, as described at the start of this
paper. According to AQWA-LINE the sway damping force is less than 1% of the heave damping force (both per unit
motion in still water), so the additional waves produced by this sway motion will be negligible.

SIn the earlier literature cited above, by contrast, the design aim of WECs appears to be to concentrate radiated waves (as
opposed to the 'produced' waves considered above which are radiated+diffracted) in the upwave direction. See in
particular [4] eqn (2), which applies to a device like the Pelamis WEC. The diffracted waves from the Pelamis WEC
will clearly be in a downwave direction (by the argument of (8) above, in fact, which applies equally to the diffracted
waves) - it is not clear how combing these with radiated waves in an upwave direction will make the Pelamis WEC
produce waves downwave overall, as appears to be necessary from the arguments of this paper.

Indeed, it appears that the emphasis on radiating waves upwave has encouraged the development of WECs which are
wave reflectors in the quiescent condition, like the Salter "duck". Here such a radiated wave is clearly required, to
cancel the wave reflection, without introducing losses behind the WEC. From an engineering point of view, however, it
is very difficult to make such a device which is also capable of surviving extreme storms.
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EFFECT OF SLOSHING ON SHIP MOTIONS

Olav F. Rognebakke and Odd M. Faltinsen
Department of Marine Hydrodynamics

Norwegian University of Science and Technology
N-7491 Trondheim, Norway

When a ship carrying liquid cargo moves in waves, sloshing may occur. The ship motions excite sloshing which
in return affects the ship motions. 2-D experiments on a box-shaped ship section excited by regular beam
sea have been conducted to study this coupling effect. The section contains two tanks and can only move in
sway. The external ship motion problem may be solved by using a standard linear strip theory program, while
the sloshing must be described by a nonlinear method. The adaptive multimodal approach by Faltinsen and
Timokha [1] has been used. This method has been extensively validated for forced tank motions. The present
study represents a first validation for coupled internal and external flows.

The experiments were carried out in the wave flume of the Department of Marine Hydrodynamics at NTNU.
The flume has an overall length of 13.5 m and is 0.6 m wide. It is equipped with an electronically operated,
computer controlled, single flap wavemaker, calibrated for a water depth of 1.03 m. The side walls and the
bottom of the flume are made of glass.

Fig. 1 shows model parameters. The ship section with an overall length of 596 mm has 2 mm clearance from
the flume walls. The breadth is 400 mm and the draft 200 mm. The two identical tanks have breadth b of 376
mm, a length of 150 mm and a height of 288 or 388 mm depending on the position of the deck. The deck may be
lowered when sloshing induced water impact on the tank roof is desirable. No tank roof impact occurred in the
reported examples. Weights are added to the model so that the total weight equals the buoyancy for the fixed
draft. and different amounts of water in the tanks. The section slides along two rails where low friction bearings
are used. It is restrained from drifting off by springs with a total stiffness of 30.9 N/in. The springs cause an
eigenfrequency well below the studied wave frequencies. The steepness of the waves was kept below a certain
threshold value to prevent breaking. Fig. 2 gives the chosen relation between frequency w and amplitude (a of
the generated regular waves.
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Figure 2: Relationship between wave

Figure 1: Box-shaped ship section, side and top view amplitude and wave frequency

A typical time series for the sway motion of the section with water in one tank, is shown in Fig. 3. A
transient phase precedes a steady state for the system. A beating period of P 5 s is evident during the transient
phase. This is the eigenperiod of the system consisting of the springs and the ship model. A shift in mean
position of the section occurs due to 2nd order drift force. The steady state motions show almost no higher
order harmonics. This indicates that the higher order part of the sloshing force is filtered out by the system.
The steady state phase is short for long waves and consequently the uncertainties in measured sway amplitude
increase. For wave periods very close to the first natural period of the fluid in the tanks an unstable situation
may occur. The sway amplitude shifts and thus two steady state responses take place during one run. In
the experimental data presented later where one tank is filled with h = 0.184 m, this can be seen as two very
different measured sway amplitudes for a wave frequency w = 8.65 rad/s. This is associated with jumps between
different branches of the steady-state sloshing solution [2]. The steady state ends when waves reflected from
the wavemaker and the beach reach the model.

Measured and calculated sway amplitudes for empty tanks have been compared to validate the accuracy
of the measurements, (see Fig. 4). A standard linear seakeeping program was used in the calculations. The
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experimental results for rigid mass agree well with the computed values.
Fig. 4 illustrates the large effect of the fluid motion inside the tanks. When w is smaller or slightly higher

than the lowest linear eigenfrequency a, of the fluid motion in the tanks, a sway response lower than for a rigid
fluid mass is observed for half-filled tanks. The force resulting from the fluid motion in the tanks acts against
the sway excitation force in this case. When w ; a,, the sway motion is almost zero. For w slightly above urn
the sway motion increases due to the fluid in the tanks. This behaviour can be qualitatively explained by using
a linear model for the sloshing. The phase of the sloshing force shifts 1800 when the excitation frequency moves
from below to above the first natural frequency.
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Figure 3: Example of time history of the sway motion of the Figure 4: Sway amplitude for rigid mass and
ship section. w = 9.42 rad/s and (, = 0.015m for two tanks filled with h = 0.184 m

The change with wave frequency of the phasing between the forces acting on the model is visually apparent
from Fig. 5. The right plot in this figure gives the experimental values for sway motion when one of the tanks is
filled with h = 0.184 m. Snapshots show the instantaneous position of the free surface both inside the tank and
outside the ship section, for three different wave frequencies. The phasing between the internal and external
fluid motion permits to qualitatively understand why the internal fluid motion can either amplify or reduce the
ship motion. The phasing is evident from the relative vertical motion of the free surfaces inside and outside the
model.

a) b) C) a) b) c)

Figure 5: Motion of fluid inside and outside the tank. h = 0.184 m. One tank is filled

An interesting phenomenon is observed for wave frequencies close to the resonance for the fluid motion in
the tanks. When the wave front hits the model, a significant sway motion is initiated. This in turn excites
sloshing in the tanks, and thus a sloshing force starts to counteract the excitation force from the waves. The
sway motion decreases until an equilibrium is reached. At this stage the sway induced sloshing force almost
balances the excitation force from the waves. However, since w , or, a very small sway motion causes a violent
sloshing response.

Fig. 6 shows experimental and computed values of the sway motion of the model for different filling levels of
one or two tanks. The first linear eigenfrequency a,, is indicated in the plots. Calculated values found by using
an analytical linear and nonlinear sloshing solution and a standard linear seakeeping program for the external
flow are presented for all cases. The calculations based on the linear sloshing model follow the general trend
of the experiments. However, the sway amplitude is consistently over-predicted for frequencies right above o',.
The reason is that the linear sloshing force is either in phase or exactly 1800 out of phase with the position
of the model. Actually, the phase transition occurs over a certain range of frequencies. Furthermore, when a
large percentage of the sloshing force acts in phase with the mass and added mass forces and works against
them, the increased motion results in an increased sloshing force amplitude. When the frequency is equal to a,

- 138 -



0.6 0.6
* Expernients . Expe iments %

0 Lipeai s )shiiig. 0. - iia -l lin

-Z .. ....3 ....i ..s h ... i. ... .. ... .. . ... .... .. .. .... .. . ..L i ! • ! , J. ..... ...... ..... .. ... . .... .. ............ .. , ................ ... ....... ... ..

-.5 - Nonlinlear sloslinIt i 60, - Nonlinear sloshiing :

n•.._!n ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. ..a .. ..... .., .. ... ...........i .......................... ................ L ........................ .... + . .................. .. -. ............ .

0 . .. .. ... ..... .. "..". .

One. tank, Ii 0.184m. Two tanks h Ol4i
0 -'i 0

7 8 o-a 9 10 11 7 8 o,, 9 10 11
w {:ad/s] ws [rad/s]

0.8 0.7
*Experiments ExFperime nts

0. . . iiiii sosoig0.6 ...... Linear as.1te~line
3 - Nonlinear Sloshiing E3- Nonlinear sloshingi

0.6.. . . .. ..... .....
0 .5...... .......

• 0 .5-•.- ..... o .. ............ ... t ......................... .... .:, : ................................ ....

o o,2 ..........................................4 i..... .................. ". .............. ............ i ......... ....... .. .. ..

0 . .... ...... ... Ar .... 11 1........

0 .4 ... ... .. .... .. .

Fiue60Cmaion0ewe eprmntCnoaluain

0. 0.3.... .. ...
0.3.2

02...................... ........ ......................................

0.2 0.2iersohigmdltersutn lsigfoc sifnt fo9iiesa oin.Tecmiain

0.1.. . . . . .......... .. ...... ......-.. . .. ... . . .. ................... 0.1.......................

V! Ont tank, It 0.094, Onte tanik hi 0.2te
0 0

6 7 11' 8 9 7 8 0a,, 10 11

w [rad/sl w [rad/sl

Figure 6: Comparisons between experiments and calculations

in the linear sloshing model the resulting sloshing force is infinite for finite sway motion. The combination of
the linear sloshing force with tile dynamrics of the model cause zero sway for w o ,,,, while in reality the sway
motion will have a minimum different from zero in the vicinity of ,n.

The linear sloshing model fails in predicting the frequency of minimum sway motion for the three cases
when only one tank is filled, since the large amplitude sloshing at resonance invalidates the assumption of a
constant natural frequency for the internal fluid motion. In [2] it is shown how the first natural frequency varies
as a function of the sloshing amplitude. When the filling height h is below the critical value h/b = 0.3374, a,,
increases as the amplitude increases. This explains the discrepancy in minimum sway by the linear sloshing
model for h = 0.094 m. For h = 0.29 m and 0.184 m, the water level is above the critical depth and consequently
the experiments show a minimum below an. When h = 0.184 m and two tanks are filled, the amplitude of the
sloshing motion at w n or, is rather small. Hence the linear sloshing model gives an acceptable result.

In the computational results where the nonlinear model is included, the equation of motion Eq. (1) is solved
in time and coupled with the nonlinear sloshing model.

(M + A 2 2 ) i 2 + B 22i) 2 + C22772 - Fexe(.() - Fslosh(712) =0 (1)

In (1) M is structural mass excluding internal fluid mass, A22 and B 22 are the frequency dependent added mass
and damping due to the external linear flow, C22 is the linear spring coefficient, Fe,, is the horizontal linear
wave excitation force and Fslosh is the horizontal force caused by sloshing. The simulations are prolonged until
steady state sway motion is achieved. The external flow model needs justification. A proper linear external
model should be based on the methodology presented by Cummins [3] which implies that the radiation force
is a function of convolution integrals. This would be needed in order to calculate the transient phase of the
external flow and sloshing induced higher order harmonic motions. But several authors, e.g. Adegeest [4], report
difficulties in applying such a formulation in practice. Actually the influence of higher harmonics in tihe sloshing
force is negligible. This can be seen from spectral analysis of the sway motion time history. In our case, since
we focus on the steady-state motions, the present external force model represents a satisfactory approximation.

By including a nonlinear sloshing model a better agreement between the calculations and the experiments
is obtained. For instance a much improved prediction of the minimum sway motion is achieved.

The computed sway amplitudes for two tanks and h = 0.184 m were found to be sensitive to the level of
damping chosen for the sloshing motion. Fig. 7 shows how the damping of the internal flow affects the results
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when a variation from 2% to 1% of the critical damping is considered. A description of how damping is included
in the sloshing model can be found in [2]. This damping may represent e.g. viscous effects or local breaking
and is not rationally predicted. The effect of external vortex shedding at the sharp corners was studied and
found to be small. For w >; o,, the sway amplitudes increase with a decreasing damping, while around sloshing
resonance the motion becomes smaller. In order to explain this phenomenon, the balance between the different
terms in the equation of motion was studied. A quasi-linear approach was applied. The sumn of the terms in or
1800 out of phase with the sway accelerations are presented in Fig. 8. The contribution from the sloshing force
is expressed as a frequency dependent restoring term C22,slosh. By making an analogy with a linear system the
zero of this sum corresponds to an eigenfrequency for the sway motion. The sum is close to zero just above or
below w = 9.5 rad/s for the two amplitudes of steady state sway motion presented. Further, the sloshing force
is large and nearly 1800 out of phase with the acceleration in the vicinity of this frequency. Thus a small change
in the phasing will lead to an important alteration of the part of the sloshing force which can be considered as a
damping term for the coupled system. The damping terms are in this case all that balances the external force.
For the example presented in Fig. 7 a phase change of 5' for Fl,,,,h at w = 9.4 rad/s leads to a change of 10%
in the sway motion. The phase is a function of the damping of the fluid motion inside the tanks. This explains
the observed theoretical behaviour. If heavy tank roof impact had occurred, the damping of the internal fluid
motion would be dominated by tank roof impact damping, [5]. Since the latter damping component can be
rationally calculated, the ambiguity in selecting ý demonstrated in Fig. 7 would be unimportant.

Further work will include the effect of tank roof impact. A natural next step is to include the roll and heave
motion in the 2-D model before starting on a 3-D analysis to avoid that too many physical effects are included
simultaneously in a complicated dynamic system.
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1. Introduction

The three-dimensional (3D) problem of blunt-body impact onto a free surface of an ideal and incom-
pressible liquid is considered. During the initial stage of impact the flow region is divided into three parts:
(i) outer region, (ii) jet root region and (iii) jet region. In the outer region, the flow is three-dimensional. It
is described within Wagner approach. Under the classical assumptions of linearization, this approach leads
to a mixed boundary-value problem for the velocity potential in the lower half-space. The boundary of the
half-space consists of two parts: the liquid free surface and the wetted surface of the body. These parts are
separated by the contact line which varies in time. Position of the contact line is obtained from the so called
Wagner condition, which implies continuous joining of the free surface and the surface of the entering body.

Wagner theory is formally valid during initial stage, when the penetration depth of the entering body
is much smaller than the dimension of its wetted part. Close to the contact line, the theory fails since
both the liquid velocity and the hydrodynamic pressure have singularities along this line. The singularity
is yet integrable and the force can hence be calculated. However, in order to get uniformly valid pressure
distribution and to improve prediction of the hydrodynamic force on the entering body, a solution which
describes details of the flow close to the contact line, must be introduced.

Such a solution was derived by Wagner (1932) in two-dimensional case. The solution was matched with
that in the outer flow region. An infinite length of jet was theoretically predicted. For 3D bodies we must
even deal with a jet sheet. In order to obtain shape of this jet sheet and the flow inside it, the jet region
has to be also considered. The jet solution has then to be matched with that for the jet root region. In the
2D wedge entry problem the jet solution was derived by Howison et al. (1991). It was shown that the flow
in the jet region is governed by the shallow-water equations and the jet is wedge-shaped. This technique
was extended by Korobkin (1994, 1997) to the case of a parabolic contour entering a compressible liquid.
Using both the known liquid flow in the jet region and the geometry of this region, the energy of the jet was
evaluated in both plane and axisymmetric cases. It was shown that during the impact of two-dimensional
or axisymmetric blunt bodies onto a compressible liquid free surface at a constant velocity, half of the work
done to move the body goes to the main flow kinetic energy and the other half is taken away with spray
jets. The jets are very thin at the initial stage but the jet velocity far exceeds the velocity of the entering
body.

This result was confirmed by Molin et al. (1996) using another method for 2D problem of impact onto
an incompressible liquid surface. This method is based on the concept of energy flux evaluated through the
jet root region. The main advantage of this approach is that the flux can be directly determined from the
solution in the jet root region and there is no need to deal with the flow in the jet region and its geometry.
This approach is used in the present paper to evaluate a part of the energy taken away with the jet in
three-dimensional impact problem. It will be shown that, in order to evaluate the jet energy, we need only
to know the asymptotic behaviour of the outer solution close to the contact line.

The outer solution for an arbitrary shape of three-dimensional entering body is still not available even
within Wagner theory. We restrict the study to elliptic contact line, for which the velocity potential is
known and the so called inverse Wagner problem has solutions (see Scolan & Korobkin 2001a). In this
frame, shapes of practical interest can be generated (see Scolan & Korobkin 2000).

It is shown that the outer flow - even singular - is approximately two-dimensional close to elliptic contact
lines. Therefore it makes it possible to use the planar nonlinear solution by Wagner (1932) for the jet root
region. By matching locally the three-dimensional outer solution with the two-dimensional jet root solution,
we arrive at a uniformly valid asymptotic description of the pressure distribution. In the case of elliptic
contact region this combined solution is used to evaluate the energy distribution throughout the flow domain
and to prove that the energy is equally transmitted to the bulk of the fluid and to the spray jet in the case
of constant velocity of the entering body.

2. Asymptotics of the outer solution close to the contact line
Within Wagner theory the wetted part of the entering body is approximated by an equivalent expanding

flat disc D(t), the boundary conditions are linearised and imposed on the initially undisturbed liquid level

- 141 -



z = 0, the liquid flow caused by the impact is assumed irrotational and is described by the velocity potential

Oout(x, y, z, t), where z < 0. It is important to notice that the liquid flow in the Wagner approximation
depends on both the shape of the contact region D(t) and the body velocity but not directly on the body
shape. We assume that the Wagner problem has been solved already so that the region D(t) and the
body velocity U(t) are prescribed. Moreover, we restrict ourselves to the case of elliptic contact regions,
D(t) = {x, y I x2 /a 2 (t)+y 2 /b2 (t) < 1}, with the planar and axisymmetric problems representing the limiting
cases. Here a(t), b(t) and U(t) are arbitrary positive functions, which satisfy the following inequalities
a(t) • b(t), U(t) < &(t) and b(O) = 0 according to the basic assumptions of Wagner theory. Dot stands for
the time derivative.

The velocity potential of the flow initiated by impact of an expanding elliptic disc is given as

Ee Ua 2 b 21 - y2 Ua 2bz f[ 0 (a 2 + b2 + 2a)do (1)

S(a 2 +A)(b 2 +A) a2 +A b2 +A 2E(e) A or(a2+0)(b2+o) 2

where e(t) = V/1 - a2 /b 2 and A(x, y, z, t) is the non-negative root of the cubic equation

a-2 b2 A3 + L2 A2 + L 1 A - z 2 = 0, (2)
x2 y2 a2 +1 1 x2 + y2 + z2

L,(x,yZt) = J a2  b2  Z L2(Xy, t) = T2 + b2 a2b2

This form of the velocity potential is suitable for analysis of the behaviour of the outer solution near the
contact line 1(t) = {x,y I x = a(t) cosa, y = b(t)sina, 0 < a < 27r}.

It is convenient to introduce the local coordinate system (P, x1 , Yi, zI), where x = a cos a + xi, y -

bsina + Yl, z = zl and (x2 + y1 + z2)/a 2  0(e), e <K 1. Within the new coordinate system we find

Ll = -2s(xi,yi,a,t)[1 + 0(-)], s(xl,yl,a,t) = xia-1 cosa + ylb- 1 sina,

L2 = A (a, t)[1 + 0(6)], p (a, t) = a 2 (t) sin 2 a + b2 (t) cos 2 a,

where p = 0(1) and s = O(E) in the leading order as E -+ 0. Equation (2) provides A = O(e) and

2 y2 2x2 2 Ap Ayi 2 ___

1 a2+ AA b22+A 2 s± + O(E), a2b2 -2

Therefore,

Ua- ( s 2(xIyla,St) + a- s(xiy', a,t))½[1 ± O(t))]

in a small vicinity of the contact line. It is seen that within the coordinate system (P, ý, , C), which is
obtained by rotation of the system (P, xi, Yi, z1 ) counterclockwise at the angle 0 = tan- [(a/b) tan a] so
that x, = - cos0 - 7jsin 9, Y, = - sin0 + qcos 0 and z, = C, the flow is approximately two-dimensional,
s = ýVff/7(ab), and near the contact line, V/2 + ( 2/a <K 1, the velocity potential of the outer flow behaves
as

o.t= -UE-1(e)At1(a/b)2(V-ý +( 2 - C)2[1 + O(e½)]. (3)

It can be verified that the axes Pý and PR are in normal and tangential directions to the contact line,
respectively. Therefore, near the contact line the flow in the tangential direction is negligible compared to
the flow in the normal direction. The local flow pattern is given by (3) and is similar to that in the planar
case. This two-dimensional flow can be matched to the solution in the jet root region established by Wagner
(1932) for the planar impact problem.

3. Parameters of the jet in 3D impact problem

The flow in the jet root region is considered within the moving coordinate system (P, •, •, C), where
ý2 + n2 + C2 /a < 1 and the local velocity potential 0,root does not depend on the tangential coordinate

77. The flow is approximately quasi-stationary in the leading order as the size of the jet root region tends
to zero, and is characterized by the jet thickness 3(a, t) and the velocity V(a, t) of the fluid in the jet.
The dynamic boundary condition shows that the jet velocity V(a, t) is equal to the normal velocity of the
point P, which is the origin of the moving system. The 2D jet root solution by Wagner (1932) provides, in
particular, the asymptotics of both the velocity potential and the pressure

Oroot • -4V p,3, pot 2 (4)
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in the far field, where 1ý1/9 > 1, 1ý1/a < 1 and ( 0. Expressions (4) have to be considered as the "outer"
asimptotics of the "inner" solution and matched to the "inner" asymptotics (3) of the "outer" solution.
Comparing asymptotic formulae (3) and (4), we obtain the jet thickness as

6(a, t) = 7 U2(t)(a/b)ua1 (a, t)
8 E 2 (e)V 2(a,t)

The jet velocity V(a, t) is equal to the normal velocity of the moving contact line, position of which is
described by the equation G(x, y, t) =0 , where G(x, y, t) = 1- x2 /a 2 (t) - y2 /b 2 (t). We obtain

G a _ b 2 2p2(a,t)
V(a, t) - IVGG G(a, t) = 2a cos 2 a + 2sina a, IVGI(a, t) a(t)b(t) (6)

where the upper dot denotes the time derivative and V is the gradient operator. Equations (5) and (6) lead
to the equality

t)V3r 
u2 a 2

(a,t)v3 (a, t) = 7'- 1 (2 a t) (7)

used below to evaluate the flux of kinetic energy through the jet.

4. Repartition of kinetic energy
It is well-known that the energy conservation law is not satisfied within classical Wagner theory. In

general case (see Scolan & Korobkin 2001a),

d [A(t) - T(t)] = 1 - () d- , (8)

where T(t) is the kinetic energy of the liquid flow in the outer region, T(t) =M 0 (t)U 2 (t), A(t) is the work
done to oppose the hydrodynamic force on the entering blunt body, and Ma(t) is the added mass of the
flat disk D(t). During the initial stage of the water impact, the added mass of the expanding flat disk D(t)
increases, dMa/dt > 0. Therefore, T(t) < A(t), which is usually considered as an indication that a part of
the energy is "lost" during the impact. It is proved below that the flux of energy in the right-hand side of
equation (8) is equal to the flux of kinetic energy through the jet in the case of elliptic contact lines.

The total velocity of fluid in the jet Vfc(a, t) is equal to the jet velocity V(a, t) plus the normal velocity
of the moving contact line, which is Vf(a, t) = 2V(a, t). The part of the kinetic energy AEj(a, t), which
leaves the main flow region through the jet root region of small length Af during small time interval At, is
given as

12
AEj(a, t) -Am(a,t)V2 (a,t), Am(a,t) = p -(a,t)Af- V(a,t)At, (9)

where p is the liquid density and Af = pdl (a, t)Aa. Equations (7) and (9) provide the total flux of the
kinetic energy through the 3D jet in the form

dt -2p [ (a, V(a, t( d -(,pUa f=(a,t)2(a,t)da. (10)
d -Sf E 2 (e)

The integral in (10) is equal to

d(a, t)p(a, t)da = 8 [(ab(1 + e2 ) + ab(2e2 - 1))E(e) + (1 - e2 )(ab - &b)K(e)], (11)

where K(e) and E(e) are the complete elliptic integrals of first and second kind, respectively.
The added mass Ma(t) of the elliptic disk D(t) is given as Ma(t) = 27rpa 2 b/(3E(e)), with its time

derivative being

dM(t 27rpa [(db(1 + e 2 ) + ab(2e 2 - 1))E(e) + (1 - e 2 )(ab - ab)K(e)]. (12)dt (t) 3e2E2 (e)

In order to derive equation (12), the following formulae were used

dE E(e) - K(e) de a(ab - itb)

de e ' dt b3 e
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Substituting (11) into (10) and comparing the result with (12), we obtain

dEi°ot 1 U2 (t) dMa

dt 2 dt
where the right-hand side is the same as in (8). Equation (8) provides after its integration with respect

to time

A(t) = T(t) + Eýot (t).

Therefore, the energy conservation law is hold within the 3D Wagner theory if the jet energy is taken
into account. It should be noted that this result has been proved only for the case of elliptic contact lines.

It is seen that the energy is equally transmitted to the bulk of the fluid and to the spray jet, T(t) = E]°t(t),
if and only if the velocity of the entering body is constant. If the body velocity is not constant, we findt

Eoit(t) = T(t) - Ma(T)U(T)U(7-)dT-,

where Ma(Q-) > 0 and U(T) > 0. Therefore, main part of the energy is transmitted to the bulk of the fluid,
T(t) > Ebot(t), if the body velocity increases, U(t) > 0, after the impact instant. Correspondingly, the main

part of the energy is transmitted to the jet , Eý t(t) > T(t), if the body velocity decreases, U(t) < 0, after
the impact. The velocity of the entering body decreases, in particular, in the case of free fall of the body
onto the liquid free surface.

5. Conclusion

As soon as the matching of the jet root and main flow solutions is performed along the contact line, we
know all necessary quantities to evaluate the pressure field. This is done in Scolan and Korobkin (2001b).
Two pressure field formulations are considered. Either the composite solution by Zhao and Faltinsen (1992)
or the "second order" solution by Cointe (1987) can be used. The force is calculated from the numerical
pressure integration all over the wetted area. For the sake of brevity the formulations and results are
not presented here. Comparisons are made with results by Zhao and Faltinsen (1997, 1998) which are
considered as more exact. For cone and circular paraboloids (as a sphere), it is shown that the "second
order" formulation of the pressure provides a force in good agreement for cone aperture less 200 and before
the maximum of force is reached for the sphere. Experimental data concerning the pressure field acting on
an elliptic paraboloid should be also obtained soon.

A.A.K. acknowledges the support from RFBR (projects No. 00-01-00839 and No. 00-15-96162) and SB
RAS (integrated grant No. 1).
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Extension of the Havelock/Dawson Method to
Include Nonlinear Free-Surface Boundary Conditions

Carl A. Scragg
Science Applications International Corporation

San Diego, California

The Havelock/Dawson method of solving linearized free-surface problems was dis-
cussed by the author in 1999 [1]. A combination of Rankine singularities distributed on
the surface of the ship hull and Havelock singularity distributions placed over the undis-
turbed free surface can be used to impose either the classic Kelvin linearized free-surface
condition or Dawson's linearized boundary condition. With this approach we have been
able to generate numerical solutions that combine the near-field accuracy of Rankine codes
with the far-field accuracy of Havelock codes. We have found this method to be both ro-
bust and computationally efficient. An extension of the basic Havelock/Dawson approach
to include fully nonlinear free-surface boundary conditions is discussed here.

The Kelvin and the Dawson linearized free-surface boundary conditions are special
cases of the general expansion of the nonlinear free-surface conditions about an arbitrary
basis function. Taking the velocity potential 41 as the sum of a known basis function 0o and
an unknown perturbation potential 0,, we can write the free-surface boundary condition
in the following form:

½v0 .V(V70 .Vqo0 ) + V¢0 .V(Vo 0 -V7 1) + g 0 =

-½V¢ 0 .v(v¢0, V0) - g~ ± o(V, 1)2 .

Assuming that the perturbation potential is "small", V0 1 <7 V70 , we hope to be able
to neglect the higher order terms in Vq17. Of course, the nonlinear boundary condition
should be satisfied on the exact position of free surface, z =. However, consistent with our
intent to retain only the first order terms in the perturbation potential, we can expand this
boundary condition in a Taylor series about the position of the free surface corresponding
to the basis flow, z = (0. Such an expansion leads to first order terms in A( = ýi - (0,
that should properly be retained under the assumption that they can be of the same order
as the first order terms in 0,; see Nakos and Sclavounos, 1991 [2], for details. However,
Raven, 1996 [3], pointed out that the A( terms can be quite irregular and suggested that
the convergence of an iterative scheme may actually be improved by leaving these terms
out. We decided to follow Raven's approach in order to take advantage of the numerical
simplification, and we apply the boundary condition directly on z = (" •

In our iterative scheme, we use the Havelock/Dawson solution as the initial basis flow
(or zeroth iteration). We then attempt to solve for the perturbation potential by applying
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the linearized expansion about the basis flow using

V +V(V' ,V O ) + g -°o ,

S2- , on z = (i

The new free-surface elevation (i+1 is calculated by applying the Bernoulli equation on
z = (j. It was not obvious that such an iterative scheme would necessarily be convergent.
However, by first extending our existing Havelock/Dawson code to include the perturbation
expansion about an arbitrary basis flow, and then nesting the code within an iterative loop,
we are able to investigate the convergence numerically.

With the basic Havelock/Dawson method, Rankine source panels are distributed over
the surface of the hull S(x, z), and Havelock source panels are distributed over a local
region of the undisturbed free surface Z(x, y) = 0. It has been found that the Havelock
singularity density necessary to satisfy the free-surface boundary condition tends to zero
rapidly as the distance from the hull increases, and therefore the number of free-surface
panels required can be quite small relative to other methods. For the nonlinear problem,
we wish to distribute the free-surface panels on (i(x, y) 4 0, and the accuracy achieved by
panelizing a small near-field region of the free surface needs to be demonstrated. Further-
more, positioning Havelock singularities at locations above the mean free surface presents
mathematical difficulties that will be addressed in the following section. For the moment,
imagine that we distribute N Rankine panels over the surface of the hull S(x, z), and M
Havelock panels over the near-field region of the free surface (i(x, y), to solve for Oi+1.
The determination of the source strengths us and crz necessary to satisfy the boundary
conditions will involve solving a matrix equation of the formLAl1  A12 ias] 1 [BS]

A 21  A 221 ] = L Bzj where

All contains the influence of the Rankine hull panels on the hull collocation points,

A 12 contains the influence of the Havelock free-surface panels on hull collocation points,

A 2 1 contains the influence of the Rankine panels on free-surface collocation points, and

A 22 contains the influence of the Havelock panels on the free-surface collocation points.

The vectors BS and BZ contain the boundary conditions to be satisfied on the hull and
free surface respectively.

There is no difficulty calculating the All and A 21 sub-matrices since the influence of
Rankine panels is well defined for arbitrary field points. However, evaluation of the A 12
and A 22 sub-matrices can be problematic since either the source point, the field point, or
both, might occur at positions above the level of the undisturbed free surface, z = 0. The
ek(z+z') term in the Havelock Green function represents the attenuation of free-surface
waves due to either the depth of the source point z or the field point z', and generally both
z and z' are < 0. With positive values of the source and field points, the influence of the
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Havelock wave potential will grow exponentially. One method of avoiding this problem is
to use a coordinate system fixed relative to the local free surface. Then the position of
both the field point and the source point can be taken as the local depthand the ek(z+z')

term will always be < 1.
In the calculation of the A 22 sub-matrix, we have employed an ad hoc assumption that

since both the source point and the field point are located on the free surface at zero depth,
the depth attenuation term is equal to unity. In the calculation of the A1 2 sub-matrix, the
Havelock source point is always located at zero depth and the depth of the field point on
the hull is calculated relative to the local dynamic waterline. Otherwise, the subroutines
that we use to calculate the influence of Havelock singularity distributions are similar to
those used in the linear Havelock/Dawson code.

As always, the Wigley hull was the initial geometry used to investigate the convergence
of the iterative scheme. Since the wetted area of the hull will change with each iteration,
one should repanelize at every step. However, for this investigation, the hull was assumed
to be fixed in sinkage and trim and we could then simply panelize the hull to some distance
above the design waterline, and assign a source strength of zero to each panel that is not
submerged at any particular iteration. We allowed the iterative scheme to proceed until
the Rankine and Havelock singularity strengths associated with the perturbation poten-
tial were two orders of magnitude less than the singularity strengths calculated for the basis
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Figure 1 - Free-Wave Spectra Calculated for First 4 Iterations
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flow (Havelock/Dawson solution). We found that this convergence criterion was satisfied
in just 4 iterations for the Wigley hull test case at Fn P 0.35. Moreover, the radiating
waves had converged after only 2 iterations, as can be seen from the plots of the free-wave
spectra. The hull was panelized with 604 Rankine panels and a similar number of Havelock
panels were distributed on the free surface. These computations required about 22 minutes
to run on a 400 MHz Macintosh G3.

We ran a second test case using a more complex hull geometry - a high-speed naval
combatant hull form. This geometry required 890 Rankine panels to define the hull shape.
The local free-surface domain was panelized with 975 Havelock panels. For an 18-knot case
(Fn = 0.23), the convergence criterion was met in 7 iterations. However, as was observed
with the Wigley hull test case, the calculated free-wave spectra are quite close to the final
nonlinear results even after the first two iterations. In the near-field, the dominant effects
of the nonlinear free-surface conditions appear as a deepening of the wave troughs, an
increase in the wave slopes, and a minor phase shift in the bow wave. This computation
took about 100 minutes on the same Macintosh G3 computer.

Nonlinear Solution

Destroye Hull Form -18 kts s

Havelock/Dawson Solution

-2.5 Elevation (ft) 2.5

Figure 2 - Nonlinear vs. Linearized Free-Surface Waves
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A new type of trapped mode and its relevance to the forces on

parallel arrays of breakwaters

B.J. Shipway & D.V. Evans

School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW

The classical linearised equations and boundary conditions governing water waves and their
interaction with obstacles permit few explicit analytical solutions. The exceptions include Have-
lock's 1929[5] solution for a vertical wavemaker and the solution derived from this by Ursell in
1947[17] for the scattering of two-dimensional water waves by a thin partly-immersed barrier in
deep water. Susequently a number of authors, including Mei[12] and Porter D.[15] showed that
an explicit analytical solution was possible for the scattering by or radiation from, any number
of thin vertical barriers positioned on the same vertical line.
Later Levine & Rodemich[8] showed that the scattering by a pair of identical parallel partly-
immersed vertical barriers could also be solved explicitly but the usefulness of their solution was
restricted by its complexity. In contrast the simpler case of a pair of identical parallel vertical
barriers extending indefinitely into the fluid from a point beneath the free surface was solved by
Jarvis[6] and useful results on the transmission and reflection coefficients obtained.
In 1972 Evans &I Morris[3] revisited the case of the surface-piercing pair of barriers and utilising
a powerful variational method were able to get accurate results for the scattering coefficients. In
particular they were able to prove that for certain spacings, depths of immersion and incident
wave frequency, a wave could be completely reflected by the pair of barriers, the first time this
had been observed in classical water wave theory. The same phenomenon did not hold true for
the submerged pair of barriers although in both cases the more common phenomenon of complete
transmission did occur.
The result of zero transmission was subsequently confirmed by Newman[13] using matched
asymptotics for closely-spaced barriers and by McIver[1l] for finite water depth using matched
eigenfunction expansions. Finally Porter R. & Evans[16] confirmed McIver's results using an
accurate complementary variational approach.
The importance of the zero transmission result to Evans & Morris lay in the possibility of de-
signing efficient breakwaters although the closeness in frequency of complete transmission for
the same barrier configuration ruled this out as a practical breakwater in mixed seas. Further
examples showed that zero transmission does not require a pair of separated surface-piercing
bodies for it to occur. Thus a careful scrutiny of the curves of transmission published by Haren
& Mei in 1979[4] in their paper on the scattering by a Salter duck wave-energy device shows that
it occurs here also whilst more recently Parsons & Martin[14] have shown numerically that it
occurs in the scattering of waves by an inclined partly-immersed thin plate provided the plate is
not vertical.
Speculation over the question of the uniqueness or otherwise of the two-dimensional water wave
problem led to a revival in interest in zero transmission configurations. Thus Evans argued that
at that frequency and configuration an identical pair of barriers positioned at an appropriate
and sufficiently large distance from the first pair would totally reflect a wave incident upon them
from the direction of the other pair and that the reflected wave would itself be totally reflected
on reaching that pair and so on so that the net effect would be a standing wave between two
identical widely-spaced pairs of barriers and only a local evanescent field outside each pair. Such
a motion would provide an example of a non-uniqueness as any multiple of this solution could
be added to the solution to the scattering of a wave incident on the two pairs of barriers from
the region exterior to both pairs.
The uniqueness question was put to rest in 1996 on the publication by McIver M.[10] of an
explicit example of non-uniqueness obtained by superposing two identical line sources in the free
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Figure 1: Curves of zero transmission past 2 barriers. Pairs of numbers next to curves indicate
ratios of barrier widths to channel width d. b is the barrier spacing and k is the wave number
related to the radian frequency through the relation uw2 = gk tanh kH where H is the depth of
water in the channel.

surface at a spacing which cancelled their net far field. She showed that certain streamlines of
the resulting field entered the sources from above the free surface and could be replaced by pairs
of rigid bodies entirely enclosing the singularities with an open free surface between them. The
rigid bodies all have the property that they intersect the free surface non-vertically a property
shared also by the Salter duck thus adding weight to the Evans argument but the authors are
not aware as to whether a single Mclver body is capable of demonstrating zero transmission.

Recently Kuznetsov et al[7] have solved the four-barrier problem numerically using the varia-
tional approximations described by Porter & Evans and have confirmed that there are solutions
describing standing waves or trapped modes between the pairs of barriers with just a local de-
caying field outside the pairs and that these solutions do indeed occur close to the spacings and
frequencies predicted by the wide-spacing arguments of Evans.
The existence of trapped modes in an infinite wave channel containing a vertical bottom-mounted
surface-piercing circular cylinder was first proved by Callan et al[l] and their relevance to the
large forces on large finite arrays of identical cylinders was pointed out by Maniar & Newman 191
at a previous Workshop. The existence of trapped modes about an arbitrary cross-sectional
cylinder in a channel was proved by Evans et al[2]. In all cases the condition satisfied on the
centre-line was the Dirichlet condition of the vanishing of the potential, corresponding to a fun-
damental sloshing motion.
In the present work we obtain for the first time solutions describing trapped modes for bodies
on the centre-line of an infinite channel which satisfy a Neuman condition on the centre-line and
which can therefore be accessed by an incident plane wave from infinity. The method is a direct
extension of the ideas on zero transmission described above.
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Thus we first show that two identical vertical thin plates with axes perpendicular to the walls
of the channel can if suitably spaced, when partly spanning the channel, exhibit zeros of trans-
mission at certain frequencies. Figure 1 gives an example of how these frequencies depend upon
spacing and span.
Armed with this information it will be shown that trapped modes exist in the interior fluid re-
gion between this pair of plates and its mirror image at suitable spacings and frequencies which
approach the values corresponding to zero transmission as the spacing between the two pairs
increases. The relevance of the results to large double arrays of breakwaters and the forces they
might experience will be discussed. Curves showing the variation of the trapped mode frequencies
with the geometry of the configuration will be presented. An extension to the case of Rayleigh-
Bloch waves between a double row of identical parallel plates with gaps will be discussed showing
for the first time the existence of such waves at wave numbers above the fundamental wavenum-
ber associated with Rayleigh-Bloch waves.
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Parabolic Approximation of the Hydro-elastic Behavior of
a Very Large Floating Structure in Oblique Waves

Ken TAKAGI
Department of Naval Archilecture and Ocean Engineering, Osaka Uniersity, Suita, JAPAN

1.INTRODUCTION

Recently the estimation of elastic motion of a very large floating structure (VLFS) has been carried out for the
Mega-Float project in Japan. The latest version of the computer code is based on the Finite Element Method.
This code can deal with arbitrary shape of the structure and the topology of the sea bottom, however the code
is time consuming and is not useful for the conceptual design. Actuary, the committee of the project regards
this code as a program for the detail design.

It is obvious that we need a method to estimate the effects from all environments, for example the bottom
topology, break water, geometry of the structure and so on, in the conceptual design. The method should
be easy to handle and should not be time consuming. In this aspect, Takagi and Kohara[2000] proposed an
application of the ray-theory to hydro-elastic behavior of VLFS. The theory itself is based on the classical ray
theory. The hydro-elastic behavior of VLFS is treated as wave propagation in the platform. The wave field
around the platform and in the platform is represented as a summation of wave rays.

The shortcoming of the ray theory is that corners of the platform are singular point. Takagi [1999] solved
the corner problem that is the wave propagation from the water region to the semi-infinite quarter plane covered
with the elastic platform and it is found that the corner effects is inversely proportional to the square root of
the distance from the corner. Therefore, the corner effect is limited around the corners. Another shortcoming
is that the wave amplitude is suddenly changed along a ray that passes through a corner. This shortcoming is
overcome by applying the parabolic approximation in this paper.

2.FORMULATION OF THE RAY THEORY

It is well known that the water wave problem is greatly simplified by the shallow water approximation, since all
evanescent terms are vanished. Although extension of the ray theory to the finite depth problem or the varying
depth problem has no essential problem, the shallow water approximation is employed in this paper for the
simplification of the problem. The velocity potential satisfies the modified continuity equation

K-¢ + [1 + MV 4] •2 0 = 0, (1)
h

2
where K = -, M D/pg and hI is the water depth. D is the flexural rigidity of the platform, g is the
gravitational acceleration and p is the density of the water. (1) gives the dispersion relation in the platform.

K = (1+ Mi4)a2 h (2)

It is well known that (2) has six roots, and three of them are suitable for present problem. We call these roots
as a, (n = 0, 1, 2) herein after.

The ray tracing is performed, according to the characteristic form of the conservation of the wave number

__ - - on - 9 (3)
ds -T ds &ao

where Q(ao) = V/gao(1 + Ma4)a2h.
If the water depth and the flexural rigidity were constant, the problem would be very simple. We just take

the refraction of the ray into account at the edge of the platform. The difficulty is that the displacement of
the platform is suddenly changed along a ray that passes through a corner as stated previously. In order to
overcome this difficulty, we discuss the asymptotic form of the exact representation of the wave propagation in
the platform.

3.ASYMPTOTIC FORM IN THE PLATFORM

According to the boundary integral formulation derived by Takagi [1999], the hydro-elastic behavior of the
platform is represented by the sinusoidal distribution of the Green function.

I limj e-i(kc )G(x,0,y,t?)dql

lira 1 e 0 -i(k,-i,), 0- 11 Jo(kR')dkdq, (4)
,t- 0 27r j (K - it) - (l+ Mk 4)k 2h

- 153 -



where c and t ensure the radiation condition.
Applying a contour integral to (4), a component of plane waves can be derived. The detail of the derivation

is found in Takagi[1999].

i K 0_ e-iaoRcoshO i K f_ eia jRcosh 0

27r ceoA'(-aO) 0 ky - ao sin (3 + iO) 2d--r f k' + asin(l + iG)

i fK o e-ia,4 RcoshS dO+C 1 1+C0 2 +0 3 , (5)
2w a 4 A'(G 4)J- ky -a4 Sill (0 + iO)

where,

0 when 0 >/3 > joC = Ke-inao cos (p0-/3) ,(6)
• when 5 <(63<

I.- OaA'(ao) cospo2

C Ke-iRaj cos (gi-O)

1 2  = - Ia.A'(al)cospi (7)

0 when 0l < W[,U41C13 = .Ke-ffla4 COS(44-0) (8)- 2 a4 cosp4 when 0 > Ri 4]'

k4 A,(a 4) COS P4

ky - tanpa, x }=R{Cflsi (9)

and A(a) (I + Ma 4 )a 2h. It is noted that C11 denotes plane progressive waves and it does not affect the other
edge i.e. on the line y = 0. C12 and C13 are also plane progressive waves, however their wave number is a complex
number and these waves decay quickly as the coordinate x becomes large. The first three terms in (5) represent
the end effect and the first term is asymptotically proportional to i/•,/- oR. When the observation point is far
from the corner, the end effect vanishes and the solution coincides with the solution of the semi-infinite half
platform problem.

A difficulty is expected when 0 equals to fl, because the stationary phase method can not be applied to the
first term of (5). Therefore, the asymptotic form along this line is discussed. The following coordinate is defined

x, } {c os (O-(, ) (10)
y, sin (j3- p0)

and the order of y' is assumed to be 0(a- l/ 2 ). It is also noted that the we are considering the region R 0(1).
After some manipulations we obtain

0 c_ _os _ 0 f C .e o c 9  dO + - a02,(a0o)

27r k, - ao sin (13+iO)K

- ei 'l +•i I +C() - i I S(or)) + 0(ao1)'(11)

where (T = aoy'/(Traox') 1 / 2 . It is obvious that the right hand side of (11) is the anti-symmetric solution of the
parabolic approximation that is found in May[1989].

4.PARABOLIC APPROXIMATION

According to the previous analysis, it is reasonable to assume the velocity potential of the form

0(X, y) = 4,(x, y)e-iao(x cs po+ysin go). (12)

If the angle of wave propagation po is large enough, 0 would be the anti-symmetric type solution of the parabolic
approximation as stated previously. On the contrary, when po = 0 (head sea case), Ohkus[1999] showed that 0

is the symmetric solution of the parabolic approximation. A difficulty may be expected, when po O(ao12.

In this case, the parabolic approximation leads

-2io• ax-- Y 5 0 (13)
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in which the all terms are equal in order of magnitude when x = 0(1) and y = O(0o!/2). In such a order-
assumption, the relative error of (13) is O(aoo).

To solve this equation, we require the conditions,

0(x, y) -• 1, when y --+ +c, (14)

?P(x,y) =0 x < 0. (15)

It is noted that these boundary conditions are not enough to solve (13). Another boundary condition is required
along the line y = 0. This boundary condition is given from the matching condition that will be discussed later.
Only the following condition is necessary here that, guarantees the radiation condition of the solution in the
water region.

',(1 + iTaopo) = T-0 O Y , (16)a•y
where T is a constant value.

The Fourier transformation technique is convenient to solve (13). The solution is represented in the Fourier
transformation space,

Y[V)(x, y) - H(x)] = (1)e(o°°/°- l-&o°i/2). (17)

Tb satisfy the boundary conditions, A(1) shoul have the form

A(1) = -I 1 + T 2a 0 1-0/oT 2o (18)

The inverse Fourier transformation gives the solution

4(X, y) --- 1 + C(') - j I + S(a)

-2 12 (2 TX7 ) I 19

where

V i W Top erf c (1±+i) Vao t0
i+ T(oo [ 2v'2 '

i ei(l+T 2a2P•')x/2T 2
aof []-i (20)V2 (X) = T e1 i 0L0 ef c (20)

and erfc(x) is the complementary error function.
It is obvious that the first term of (19) remains when 0 approaches to infinity. This is the anti-symmetry

solution of the parabolic approximation that obtained in the previous section.
We also have the alternative form of (19),

((x,y) = 1  1- /,_ [VI( (0,) +tý()]+id•. (21)

This form shows that the solution approaches to the symmetric solution of the parabolic approximation when
0 is very small.

In order to achieve the matching with the inner solution that will be discussed in the next section, a function
U(x) is defined as

(x) 1 - / J [Vi(e) + V2(•1) + iiVao/) -i°(ý-)o1 . (22)

It is apparent that V approach to U(x) when y approaches to zero.
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5.INNER SOLUTION

It is noted that (19) does not satisfies the edge conditions, and the parabolic approximation ignores the
exponentially-decay term that is one of fundamental solutions in the platform region. This fact implies the
necessity of the inner solution, and the inner solution is valid in the region of y = 0(a-1).

It is easily obtained that psi should satisfy the following equation in this region.

K V( + 1 + M 9or - 2iaopo C + 02 0. (23)

The solution of (23) in the platform region is supposed to have the form
2

"4(x, y) =U (x) >j B'e (osin °go- V/ý- ýcs 2)y + BoO (x, y). (24)
n=/1

It is obvious that the matching condition requests

B0 = 1 (25)

On the other hand the inner solution in the water region should satisfy (23) of the case M 0. Therefore, the
inner solution in the water region has the form

2

UT(x) Bei,(ccs<-sn (26)
71=1

where k is the solution of dispersion relation in the water region K/h= k 2 and XR = Cos-' 0 cospo0/k.
The continuity of the flux along the line y = 0 requires

I E iksinx2R2B. (27)T 0/10 + iZE ?n Y - au Cos/1 -o=i i R n
n=1 11=0

The so-called free-free boundary condition at the edge of platform requires two conditions

9

L [o +a ocos 2 io(i-v)n] c, - ei cos2 •Bo, + - i/ooto c•el+cos2/po]=0 (28)

2

[ -1_o.s 2iP(1 -V)o2] = 0. (29)
n=0

Now we have three equations and three unknowns, thus the inner solution is completely determined with a
simple linear algebra.

6.CONCLUDING REMARKS

It was found that the hydro-elastic behavior of a very large floating structure is represented with a simple
equation by applying the parabolic approximation. It seems that this result is also extended to the case /10 < 0
and to the iniprovement of the sudden change of wave elevation that appears in the water region. These will
be the future works. Finally, it should be noted that the corner effect is still the problem, and further study is
necessary since the magnitude of motion at corners of the platform is usually big.
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Development of a 3D-NWT for simulation of

running ship motions in waves
Katsuji Tanizawa and Makiko Minami

Ship Research Institute,
6-38-1 Shinkawa, Mitaka, Tokyo, Japan

1 Introduction computers are still not powerful enough to run 3D

Numerical Wave Tank (NWT) is a generic name of simulations. However, development of 3D-NWT is

numerical simulators for nonlinear free surface waves, present hot topic. Many challenging works are on
hydrodynamic forces and floating body motions. In going and overcoming the difficulties.
the past two decades, a lot of efforts have been The authors are also developing 3D-NWT. The

made to develop theories and numerical techniques target of our 3D-NWT is simulation of running ship
for NWT. motions in waves. In this abstract, the basic for-

The first pioneer work was the development of mulations of our 3D-NWT and simulated results of

well known mixed Eulerian and Lagrangian method running modified Wigley hull motions are presented.

(MEL) by Longuet-Higgins and Cokelet (1976). In 2 Formulation
MEL method, as its name shows, Eulerian field equa-
tions are solved to obtain fluid velocity, and obtained
velocity is used to track fluid particles on the free sur-
face in Lagrangian way. The development of MEL
enabled us to compute fully nonlinear free surface
motions in time domain.

The second pioneer work was the development
of modal decomposition method by Vinje and Bre-
vig (1981). They introduced acceleration field
and showed how to determine pressure distribution
and resulting floating body acceleration simultane-
ously. This was the first consistent method to sim- Fig.1 Computational domain
ulate nonlinear floating body motions in time do-
main. Cointe et al.(1990) used this method in Fig.1 shows the computational domain bounded by
their NWT. Following these works, other three con- free surface Sf , four vertical control surface S,, a
sistent methods were developed in rapid succes- bottom Sb and hull surface Sh . Reference frame
sion. Tanizawa (1995) developed implicit bound- o - xyz is a inertial system advancing with ship in
ary condition method. Berkvens (1998) developed constant velocity. The fluid is assumed to be ho-
3D-NWT based on this method. Recently, Ikeno mogeneous, incompressible, inviscid and its motion
(2000) and Shirakura (2000) also developed 3D-NWT irrotational. All variables are nondimensionalized
based on implicit boundary condition method. Cao using fluid density p, gravitational acceleration g
et al.(1994) developed iterative method. Wu and and hull length L. Velocity potential € is used
Eatock-Taylor (1996) extended the modal decompo- to describe the ideal fluid motion. In the fluid do-
sition method and proposed a new indirect method. main, the velocity potential satisfies Laplace's equa-
Kashiwagi (1998) used this method as faster solver of tion V2

0 = 0. Applying Green's theorem, boundary
floating body motions. integral equation (BIE)

By these research efforts, theories and numerical
techniques were developed and prepared as necessary c(Q)¢(Q) = / ¢(P)uj (P, Q) - u(P, Q),n (P)ds (1)
parts of NWT. Nowadays, using these parts, we can JS
develop practical 2D-NWT as we wish. On the other is obtained, where P and Q are points on the
hand, development of practical 3D-NWT is still tough boundary S, c(Q) is solid angle of the boundary
work. We have to develop additional theories and at point Q, u(P, Q) = 1/1LP - Q1I is kernel func-
various numerical techniques for 3D-NWT. Desktop tion. Subscript n denotes the operation n • V in

E-mail tanizawa@srimot.go.jp URL http://www.srimot.go.jp/dyn/waveload.html
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which n is the unit surface normal vector. This BIE 3 Simulation
is valid also for (0/(t = .t . 3.1 Target of the simulation

Originally, NWT is developed for nonlinear time For test trials of the newly developed 3D-NWT,
domain simulation. However, 3D-NWT requires large motions of a modified Wigley hull were simulated.
amount of computation. Capacity and speed of desk- The modified Wigley hull form is defined as
top computers are still not enough to simulate practi-
cal problems. Therefore, as the first step, the authors 77 = (1 - ý2)(1 - (2)(1 + 0.2ý2) (8)
developed a linearized 3D-NWT to test various ideas + (2 (8)(1 _ C2)4

by trial and error. In the linear NWT, the boundary
shape is fixed to the mean position of oscillation and where • 2x/L, q = 2y/B, • = z/d. The principle
following boundary conditions (BC) for velocity field dimensions are shown in Table 1.
and acceleration field are imposed on it.
* Free surface Table 1 Principle dimensions of ship

,9( 0, 9( ao Length: L 1L
- = 0 ': - L (2) Breadth: B 0.15Lat ax Ox ayay Draft: d 0.0625L
ot = - 1(V1.1V¢) (3) Displacement: V 0.56LBd

2 Water-Plane Area: A, 0.693LB

where ( is wave elevation. Value of ¢ on z = 0 Center of Gravity: OG 0.012L

is given by time integral of eq.(3). The second order Gyrational Radius: kyy 0.2325L

term (Vl. VO)/2 is left to consider the steady wave
field by running ship. The 3D-NWT is bounded by 4L x 4L square free
f Hull surface surface area, four vertical control surfaces and a bot-

tom at the depth L. Wave damping zone, used by
Sn + xCointe(1990), is allocated at the border of the free
= n (V + w × r) (4) surface. Since the breadth of the damping zone is

(+ xrL, the effective free surface is 2L x 2L square area.
n + =o x r) (5) Boundary panels of the hull and NWT are shown in

Fig.3 and Fig.4. On the damping zone, larger panels
where V , w are velocity and angular velocity of the are used. At the location where flux is discontinuous
hull respectively, r is position vector of hull surface such as intersection lines of free surface and hull, cor-
from the center of gravity. nor points on NWT and etc., double nodes and triple
"" Bottom a 0(6)nodes are collocated. For this NWT, a higher order

-- = 0 (6) BEM (HOBEM) is newly developed. This HOBEM
supports mixed use of triangular element (linear and

"* Vertical control surface quadratic) and rectangular element (linear, quadratic

a¢ _9 0 a o ¢ 0a"t and Lagrangian). For the following simulation, linear

-n 5n ' an 9n (7) triangular and linear rectangular elements are used.
Total number of elements and collocation points are

where ¢0 is velocity potential of linear propagating 4560 and 4827, respectively.
waves observed from o - xyz system.

To determine the acceleration of the hull V, , 3.2 Simulated results
we need pressure distribution p = -0t - (V¢)2 /2 - z Using the 3D-NWT, motions of the running modi-
on the hull. Therefore, the acceleration is unknown fled Wigley hull were simulated in regular waves. Pa-
before we solve BIE of Ot . This means we can not rameters of simulations were 1) X = 180deg. (head
use BC(5) explicitly and some implicit methods are sea), 2) Fn = 0.2 and 3) A/L = 0.5 - 3.0. Fig.5
indispensable to solve the acceleration field. As ex- shows simulated wave field around the hull at an in-
plained in the introduction, implicit methods were stant of the periodical motion. Diffraction and ra-
studied in the past two decades and following four diation wave by hull is significant for shorter waves.
methods were available now. We can observe small amplitude Kelvin wave pat-

(1) Iterative method tern, too. However, the present code is still unstable
(2) Modal decomposition method for high speed simulation and convergence of Kelvin
(3) Indirect method wave may be insufficient. The results presented in
(4) Implicit boundary condition method this paper is obtained by short simulation of about

In the present linear 3D-NWT code, the authors use 10 wave encounter periods.
modal decomposition method to save memory and Next, simulated heave and pitch responses are
CPU time. Above four methods are reviewed by shown in Fig.6. The thick solid line with black cir-
Tanizawa(2000). cle shows the result of simulation by 3D-NWT. The
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thin solid line, broken line and white circle shows the of these systematic accuracy check will be reported
result of enhanced unified theory (EUT), NSM and at the workshop.
experiment by Kashiwagi et al.(2000). In compari- Our final goal is development of fully nonlinear
son with heave responses, you see a gap in resonant 3D-NWT for simulation of running ship motions in
frequency between NWT and others. The reason of waves. After we complete linear 3D-NWT, we intend
this gap is under investigation and not clear now. to extend it to body surface nonlinear code and fully
In comparison with pitch responses, agreement be- nonlinear code step by step.
tween NWT and others are good. NWT gives a lit-
tle larger response which looks nearer to experiment References
than EUT and NSM. Looking at phase, agreement 1) Longuet-Higgins,M.S. and Cokelet,E., (1976), "The
between NWT and others is good in longer wave deformation of steep surface waves on water I. A
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Fast Multipole Method for Hydrodynamic Analysis of Very Large
Floating Structures *

Tomoaki Utsunomiya &, Eiichi Watanabe

Department of Civil Engineering, Kyoto University, Kyoto, Japan
Naoshi Nishimura
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1 Introduction

For linear hydrodynamic analysis of floating structures, boundary element methods (BEM) employing
the free-surface Green function are frequently used as basic design tools. However, when the methods
are applied for the analysis of Very Large Floating Structures (VLFS), the number of unknowns
(= N) reaches the order of 104-105 and thus large storage requirement (O(N 2)) and the excessive
computation time (O(N 3 ) for factorization solvers or O(N 2) for iterative solvers) make the application
of conventional BEM impractical. The precorrected-FFT method [1, 2] has been successfully applied to

such a large scale analysis, but not yet for a VLFS in shallow water. We hereby present an alternative
approach using fast multipole methods [3, 4, 5], which have been more commonly used in many fields

that would require excessive computation resources.
It is known that a fast multipole method for Helmholtz' equation in 2D is possible with the help of

Graf's addition theorem for the Hankel function (see Fukui & Katsumoto [6], for example). Because the
free surface Green function in shallow water is represented by series of Bessel and Hankel functions, the
fast multipole method for linear wave diffraction/radiation problems can be formulated as a straight
forward extention of the method applied to 2D Helmholtz' equation. Because the Green function in the

series form converges rapidly when horizontal distance between source and field points relative to the

water depth is large, the method will be most efficient when the horizontal dimensions of the analyzed
area, are large compared with the water depth. This is just the case for a VLFS in shallow water. We
have implemented the multipole acceleration algorithm to our higher-order boundary element program
[7] (which is based on the integral equation proposed in [8]), and examined its efficiency by benchmark
calculations including VLFS response analysis in variable water depth environment of a real sea.

2 Formulations

The Green function in finite depth water of h can be represented by

G = 2K(:R) cos k,(z + h) cos k,,(( + h) (1)
m=O N-,

where IVN_ (1 + sin 2km h/2km h),. km,. tan kmh = - 2 /g, km (m > 1) is positive real and k0 = ik, k:
the wave number, g: gravitational acceleration, and time variance of ei-t is assumed for all first order
quantities, R denotes the horizontal distance between the reference and the source points, and z and

are their vertical coordinates, respectively.
Graf's addition theorem for Bessel functions yields:

0o

Ko(kmR) K K n(kmr)enOIn(k,,p)e-in' (2)

*This study was supported by the Program for Promoting Fundamental Transport Technology Research from the
Corporation for Advanced Transport &= Technology (CATT).
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where (r, 0) and (p, 4) represent the horizontal coordinates of the reference and the source points,
respectively, measured from the origin 0 which can be arbitrarily (but r > p) chosen. Substitution of
Eq.(2) into Eq.(1) yields:

G = 0 0 M2InnKn(kn r)ei'° cosk,,(z + h) (3)
fl 7= -00

M = In(kmp)e-in' cos km(( + h) (4)

Note that the Green function is now represented in the form of multipole expansion around 0. There-
fore, we are now ready to apply the fast multipole algorithm. The normal derivative at the source
point, OG/On, can also be represented by the same form, with just replacing M,, by 8M,/On. The
origin of the multipole expansion can be moved arbitrarily (under r > p), and the coefficient Amv, for
the new origin 0' can be calculated from M,, at 0 by

A71',, = E M'I-(•)-(-))(5)

where (ý, V)) is the polar coordinate of 0 measured from 0'. This can also be obtained from Graf's
addition theorem.

In the evaluation of the integral f GVdS (same procedure can be applied to f GOdS in the
followings), the influences from near panels are evaluated directly in a conventional manner; however,
the influences from far panels can be evaluated using Eq.(3) where the Mmn is replaced by

MB= If a rI,, ,VdS (6)

where Sfar represents the surface at the far distance from the collocation point. Firstly, we calculate
1 B• for each panel locating the multipole expansion point at the horizontal coordinates of the panel
center, then gather them at the center of 'leaf-cell' as a group of several panels, where Eq.(5) can be
utilized. Further, a group of four cells form an upper level cell, and MB, is also calculated at the
center of the upper cell. Note that at this stage, we need not specify the reference (or collocation)
points. We may define the level 0 cell as a square cell including all panels, and then level 1 cell as a
quater portion of the level 0 cell, level n cell as a quarter of level n - 1 cell, etc. [5]. After setting
up the multipole coefficients Mý, for all cells at each level, we calculate f GVdS utilizing Eqs.(3)
and (6) for each collocation point, where larger cells are selected as far as possible. This hierarchical
algorithm is known to be 0(N log N) for the computation time [4]. Although the 0(N) algorithm [3, 5]
is also possible as has been made by Fukui & Katsumoto [6] we hereby implemented the 0(N log N)
algorithm because of its simplicity and easiness for developing parallelized program. Because the
integrals can be evaluated very fast using these algorithms, we can solve the integral equation with
an iterative solver without holding large part of coeffieient matrices. The requirement of only O(N)
storage may be the most attractive feature of the method.

When a factorization solver is used, we usually use modal expansion approach to VLFS hydroe-
lastic analysis, where a number of radiation problems are solved separately for each mode, and then
generalized added-mass and radiation damping are calculated for modal coordinates [7]. However, it
is not the case when an iterative solver is used; we would like to have the final solution from only
one iterative procedure without solving a number of separate radiation problems. This can be done
by solving the structural problem in each step of the iterative procedure and finding the relationships
between 0, and 0 on the wetted-surface of the structure. If the modal method is applied, this may
be represented schematically for a flat-bottom VLFS by

{fJ} = pw2[f][K - w 2 M]1-l[L]{0} (7)

where [f], [K - w 2 M], and [L] are 8NE x P, P x P, and P x N matrices, respectively, where ArE and
N are the numbers of panels and nodes on the bottom surface of the VLFS, and P is the number
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of deflection modes as an elastic plate. It should be noted that a large part of memory allocation is
consumed for storing these matrices for the Fast Multipole Method in Table 1, the memory allocations
only for hydrodynamic part are less than half of the indicated values.

A box-like VLFS, either in constant depth sea h = 8m or in variable depth sea (Fig.1), has been
analyzed for the oblique wave of 3 = 7r/4 (0 = 0 corresponds to the head wave from positive x
direction and /3 = 7r/2 to the beam wave from positive y direction). The specifications of the VLFS
are: the length L = 1,500m, the beam B = 150m, the draft d =Im, the rigidity as an elastic plate
D = 3.88 x 107 kNm, and the Poisson's ratio v = 0.3. Number of modal functions employed are 160
(20 in longitudinal & 8 in beam). Results are shown in Tables I and 2, and Figs.2-5.

Table 1: Performance of the fast multipole method and the direct method using LU factorization on
an EWS node (IBM RS/6000SP; POWER3 375MHz). The residual tolerance in GMRES C = 10-4,

L/A = 9.57 (T = 18sec), h = 8m (constant). Values in parentheses are estimates.

Typical Number Fast Multipole Method Direct Method
Model panel of Number CPU time CPU Memory CPU Memory

size, A nodes of iter. per iter. time allocation time allocation
A 25m 1,609 31 3 sec 1.80 min 27 MB 1.55 min 54 MB
B 12.5m 5,377 32 15 sec 10.4 min 89 MB 28.5 min 489 MB
C 6.25m 19,393 32 86 sec 77.4 min 315 MB (907 min) (6 GB)
D 3.125m 73,345 32 570 sec 775 min 1.15 GB (708 hr) (85 GB)

Table 2: Numbers of iterations of GMRES and computation times for various L/A. h = 8m (constant).

Model L/A) Wave Number of iterations CPU time
period c = 10' c = 10-4 10-1 = 10-4

C 9.57 18 sec 25 32 1.15 hr 1.29 hr
C 17.9 10 sec 112 148 3.46 hr 4.40 hr
C 33.2 6 sec 252 497 8.23 hr 15.7 hr
D 62.0 4 sec 287 - 63.8 hr -

D 62.0 4 sec 287 - 14.5 hr* -
*Parallel computation using 5 CPUs.
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1. INTRODUCTION

The fully nonlinear wave/body interaction problem is usually solved through a time stepping technique
based on the potential flow theory. At each time step, the potential is commonly found by using the
boundary element method (BEM) or the finite element method (FEM). The BEM divides only the boundary
of the fluid domain into small panels. Early examples of the BEM for two dimensional (2D) flow include the
work by Longuet-Higgins & Cokelet (1976), Faltinsen (1977), Vinje & Brevig (1981) and Lin et al (1984).
More recent applications of the BEM to three dimensional (3D) flow include those published by Ferrant
(1994) and Celebi et al (1998). The FEM, on the other hand, divides the entire fluid domain into small
elements. Typical applications for 2D flow include those by Wu & Eatock Taylor (1994, 1995), Clauss &
Steinhagen (1999), Robertson & Sherwin (1999); and for 3D flow include Wu et al (1998) and Ma et al
(2001 a, 2001b).

As argued by Wu & Eatock Taylor (1995, 1996) and Ma et al (2001a, 2001b), although the BEM has far
fewer unknowns when applied to the wave/body interaction problem, it usually requires considerably more
memory for "large" meshes because it leads to fully populated matrices. (An exception is when a multi-
subdomain BEM approach is used, as for example by Wang et al 1995; and there may be other ways of
improving the efficiency of the BEM). By contrast, direct application of the FEM needs significantly less
memory and it is computationally more efficient. A drawback of the FEM, however, is the mesh generation.
For a body having a complicated geometry, a sophisticated mesh generator is usually required to follow the
motion of the body and the wave. Greaves et al (1997), for example, adopted a quadtree-based mesh
generation scheme for the 2D problem. The scheme was found to be efficient when the horizontal and
vertical dimensions of the fluid domain are comparable. For an extremely long or thin domain, the CPU
requirement for the mesh generator increases rapidly. As remeshing is needed at every time step or after
every few time steps, excessive CPU consumed by the mesh generator at each time step will make the
overall computation very inefficient.

The present work therefore explores the use of a coupled BEM and FEM approach. Near the body, the BEM
is used, as a boundary element mesh is easier to create in that region. Also, when the BEM is confined to a
small domain, its memory requirement is limited. Away from the body, the fluid domain will be regular if
the wave does not overturn or break. This allows some simple mesh generator to be used, which can deal
efficiently with a large (including extremely long or thin) fluid domain. The adopted BEM and FEM are
based on the approach described in Wu & Eatock Taylor (1995). The additional work required is to ensure
that the potential and velocity are continuous at the interface of the BEM and FEM domain. This is achieved
through iteration, in a similar manner to the approach used in that paper where we implemented the domain
decomposition method for the FEM.

2. COUPLED FINITE AND BOUNDARY ELEMENT METHOD

We consider the interaction of a wave generated by a piston-like wavemaker with a two dimensional body.
A Cartesian coordinate system Oxy is defined in which y coincides with the initial position of the
wavemaker and points vertically upwards, and the origin of the system is on the mean free surface. All the
physical parameters are nondimensionalized by the density of the fluid p , a typical dimension of the body L

and the time L/g , where g is the acceleration due to the gravity. The fluid is assumed to be
incompressible and inviscid, and the flow is assumed to be irrotational. A velocity potential 0 can then be
introduced, which satisfies the Laplace equation and the usual non-linear boundary conditions on the body
surface, free surface and wavemaker.

As shown in Figure 1, the fluid domain is divided into three regions. R, and R3 are away from the body,
where the finite element method can be adopted as the mesh can be generated easily. R2 encloses the body,
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where the boundary element method can be used. The continuity of the potential and velocity is enforced on
the two interfaces F12 and 723 .

Y

X

No.o

S1w 
F 1 2 R F 2 3 R

S,

Figure 1 The coupled FEM and BEM computational domain

Based on the finite element method, the potential in R, can be written as

ni

0(1) = XO')N j(x' y) (1)
j=1

where 0i are the nodal values of the potential, nj is the number of the nodes in R1 and Nj(x,y) are the

shape functions, which have been chosen to vary linearly over triangular elements in the present analysis.
Application of the Galerkin method within R1 leads to

VNj n, O'VN dRIjS = -fVAT nb5)VN - uoj NjdS - J M NjdS. (2)

j= 1  j=I

It should be noted that the direction of the normal of F12 changes sign from R, to R2.

Within R2, the complex potential 8l = 0(2) +iv( 2 ) is defined, where /2) is the stream function. Along the

boundary we can write

n2

f= jNj(z). (3)

j=1

,8j are the nodal values of the complex potential and the interpolation function is chosen as

(Z -- Zj+l) I(Zj -- Zj+l) ZG (Zj,Zj+I)

Nj(z)= (z-zj]l))/(zj-ZjZj) zE (zj 1 ,zj) . (4)

" [0 .Z (z 1-],zj+])
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Application of Cauchy's theorem gives
n2 n2, n, n2

j=1 j=l j=l j=l 5
nn n 2X~~~k~~~b52) ~ ~ ~ -IJSoSB + AJi5)IS 1 ,-FF 3 =XAkjo 2) 1j.S 2 Z,-iAkjoP> 12r,

j=l j=1

where

ZkZj1 In zZ +Zk - Zj+1 nZj+ - Zk (6)
Z. - Z _1 Zy-1 Zk Z 1 - Zj+ 1  Zj Zk

In R3, we can write
n3 n3 f c•(2)

f VNi n3 PS)VN dR + VNL Z3) VN dR IjCS+ - +S, - -f a NidS (7)
" R3ý j=1 R j=1 -3

similar to equation (2). Here the potential on the boundary at the far end SE is treated as known, because it
can be obtained through the solution at the previous time step using the radiation condition (Ma et al 2001 a,
2001b).

Equations (2), (5) and (7) can be solved iteratively. When ao(2) Ian in (2) is assumed, the equation becomes

complete and can be solved. From the solution of 0(1) we replace 0(2) on F12 in (5) by
0(2) + r(0(1) - 0(2)), where y is the relaxation coefficient. When 0(2) on F23 is assumed in (5), the

equation can be solved to give ao(2) /In on F23 through the derivative of the stream function along the
boundary. Subsequently, equation (5) can be solved to give the new value of the potential on 123 through
0(2 ) + r(0(3) _-0(2)). The solution procedure then returns to R, and is repeated until the desired accuracy

has been achieved.

3. NUMERICAL RESULTS

The results given in Figure 2 are for a cylinder of radius r0 with submergence 1.5r0 in water of depth 4r0 .
The cylinder is placed at a distance equal to 65r 0 from both the wavemaker and the far end. The length of
the BEM is equal to 4r0 with the cylinder being in the middle. The wavemaker is stationary and the cylinder
moves with horizontal velocity U = ca sin wt (a = 0.1 and o = 1.0, using the non-dimensional parameters
previously specified). Based on the linear solution in the frequency domain, the vertical force is zero
because of anti-symmetry. The result in Figure 2b, which has been divided by a, is therefore due to the
nonlinear effect. In particular, it has been shown by Wu (1993, 2000) that when the motion becomes
periodic, the nonlinear vertical force has only components of 2nco while the horizontal force has only
components of (2n + l)0, n = 0,1,2,...., which can be seen to be consistent with the results in Figure 2.
More results and discussion will be given at the workshop.

ACKNOWLEDGEMENT

This work is supported by EPSRC through a joint project between UCL (GR/M57910) and Oxford
University (GR/M56401), for which the authors are most grateful.

- 167 -



,: \ I .... I

I ii

(a) horizontal force (b) vertical force

Figure 2 Time history of forces on a submerged circular cylinder in forced sinusoidal horizontal motion
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Abstract

The techniques of Computational Fluid Dynamics (CFD) are applied to simulate floating-body motions
in free-surface flow (e.g. waves). It is demonstrated that a wide variety of problems associated with the
coupled analysis of flow and flow-induced body motions can be dealt with by a single computer code,
which solves the Navier-Stokes equations and the equations of motion for a floating body in a coupled
manner. The method is relevant to a wide range of applications in ship and ocean engineering, such as ship
seakeeping and maneuvering etc. In this paper, a series of predictions of floating-body motions in waves
and in other flows is discussed and comparisons between calculations and measurements are also
presented.

I Introduction

Ship motions and associated loads on a ship hull can only be predicted fairly accurately using methods
based on potential flow assumptions. Large errors can be introduced by these assumptions for a few
practically important cases like ships' motions in large amplitude waves, ships' responses under a wave
impact load (slamming), or ship capsizing etc. The need for a numerical tool that can predict the motions
and loads in large waves, taking into account viscous effects, turbulence, flow separation and wave-
breaking phenomena is obvious.

The objective of this research is to develop and validate a computational technique for the coupled
analysis of viscous flow and flow-induced body movements in large/irregular waves. In the present study,
a finite volume method has been used, which can accommodate any type of grid, and is therefore
applicable to complex geometry problems. SIMPLE algorithm [1] has been taken to couple the pressure
field properly to the velocity field. HRIC (High-Resolution Interface Capturing) scheme [2] has been used
to simulate the free surface and to achieve the sharpness of the interface between water and air.

For predicting the body movements, floating-body dynamics has been implemented into the program
"Comet" [3] via user-coding; a fully-implicit predictor-corrector procedure has been employed, taking
advantage of the iterative nature of the fluid-flow solver. By the use of moving grid strategies, the
motions of the bodies are presented by the displaced and adapted grid system fitted to the bodies' surfaces.
The body movements are calculated according to the forces obtained by integrating pressure and shear
stress over body surface.

1n Computation Procedure
1. Numerical Tank

Our numerical tank consists of a fluid domain with two phases (water and air) bounded by a layer of air
on top, a bottom surface in water and four vertical boundaries. All boundaries can be physical ones if the
fluid is really bounded, but otherwise they are imaginary ones. At one vertical boundary, the movement of
a flapping wave-maker can be simulated by moving grid, or waves can be generated by giving inlet
velocity at the corresponding section. Numerical beaches are incorporated near other imaginary boundaries
so that no waves are reflected. At solid walls, no-slip conditions are applied.

Regular waves are generated by imposing appropriate inlet velocities at the wave-maker boundary. For
testing the performance of the present numerical tank, the small amplitude waves with amplitude A =
0.001m, radian frequency w = 17.73 (1/s) have been generated first. The numerical tank was set 10
wave-lengths long plus a double-sized damping zone. The results are presented below, as well as the
comparisons with the analytical results according to potential theory [4].

Figure 1 shows the instantaneous displacement of the free surface at t = 8.0 s, the implicit three-time-
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level scheme has been used for time integration. The sinusoidal wave profile is compared with the
analytical solution in Fig. 2 at t = 6.0 s.

Furthermore, Fig. 3 compares the vertical distribution of the horizontal velocity amplitude and that of
the vertical velocity amplitude at about 1.5 m away from the wave-maker obtained by the present
calculation with the corresponding values given by the linear water-wave theory [4]. The agreements are
very good.

Figure 4 shows an example wave profile of large amplitude, generated in the present numerical tank by
prescribing a large inlet velocity. As it can be observed, the wave profile is unsymmetric about y = 0, the
crests are steeper and the troughs flatter, as a result of the nonlinear effects. For comparison, the nonlinear
2ndlorder Stokes waves [4] are plotted together with the computed surface elevation. The agreement is not
as good as for small-amplitude waves as the viscous effects become more important.
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For testing the reliability of the method for predictinthehe flow-induced body motions, a number of
simple 2D-cases, with translation or rotation only, was analyzed first to verify the procedure and estimate

the accuracy. Figure 5 shows one example of the test cases. The center of square cylinder is initially
located at a distance of 1.25 D (D is cylinder width) below the free surface and is at rest as well as the
fluid itself. The cylinder is free to move only in the vertical direction as it should be. After being released,
due to the buoyancy force (density of the body is half of the water density), the cylinder first moves

upwards and oscillates towards its equilibrium position. Figure 5.a shows the free-surface and the body
position at time t = 0.6 s and Fig. 5.b shows the integral vertical force Fy, velocity Vc and position Yc of

0- 170 --



the body center as a function of time.
The horizontal lines in Fig. 5.b indicate the equilibrium states. Until at about 2 seconds, the strong

damping of body movement due to viscous forces and generation of waves is present and then large
oscillations of body are caused by the reflected waves from the vertical side walls of the channel (where no
numerical beach is employed for this test case). A very complex situation is generated while the body
breaks the free surface moving upwards and downwards with rapid change of force Fy, as shown in Fig.
5.b, representing the impingement of water at the body.

a~~~i ~b. 0.2' 4F ( '
a. 4 ()

2v,(mls)
-0.1

0 1 2- 3 4 5
time (s)

Fig. 5.a. The free-surface and the body position at time t = 0.6 s; b. The integral vertical force Fy,
velocity Vc and position Yc of the body center as a function of time

3. Comparisons with experimental results
Since it has been confirmed that the basic performance of the present numerical tank is adequate for

practical calculations associated with the wave-induced body motions, a series of computations is carried
out, for which experiments can be executed for comparing the results.
a. Axis -fixed cylinder in waves

An experiment was set up for studying the axis-fixed cylinder motions in waves. The model has the
dimensions of 12 cm width, 8 cm height and 20 cm length with the density of 665 kg/m 3, initially 3 cm
submerged under the still water surface. The fixed-axis is set at 5.5 cm above the bottom edge of the cross
section of the model. Waves are generated by simulating the flapping movements of the wave-maker in
our towing tank. The wave-maker moves sinusoidally with the period of movement 0.7 s. Water depth of
towing tank is 1.0 m. The waves have been reproduced and tested in our present numerical tank. Figure
6.a shows the free surface deformation and the body position at t = 6.82 s. Slamming occurs in such a
situation: waves are broken in the vicinity of the body and an amount of water has been splashed on the
top of body, as it can also be observed from the experiment. Figure 6.b shows the angular movements
obtained from 2D calculation compared with experimental results. Since the 3D effect is significant in the
experiment, the difference in the amplitude of the angular movement is reasonable. For further steps, 3D
calculations are about to be set up by the authors.

a. b. 40 oI
experiment

30 computation .- ---- A .-

20 ........... i
10. . ....... J [,

-10 ........ ----- --- . . i. I-

.20 . ......... ............ ........... ........... .........

-30 I _ L
0 2 4 6 8 10

T (s)

Fig. 6.a. The free surface deformation and the body position at t = 6.82 s; b. Comparison of the
angular motion in experiment and calculation
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b. Free-floating body in waves
The experiment of free-floating cylinder in waves was also set up in our towing tank. The body is made

with 10 cm width, 5 cm height and 29 cm length, and with the density of 680 kg/m 3 . Both waves and
body motions are compared with the experiment, as shown in Fig. 7. The agreement is rather good except
at the initial stage, where the noise in the experiment is rather large. The fluid velocity vector profile at t =
4 s as well as the grid in the vicinity of the body are shown in Fig. 8, which gives some insight into the
flow around the body and flow-body interaction.
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Fig. 7 a. The wave surface elevation at x = 1.5 m as a function of time; b., c., d. Comparison offree-
floating body movements as a function of time in our computation and in the experimental results.
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Fig. 8. The locally refined grid, fluid velocity vectors, and the body position at t = 4 s
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Verification of Fourier-Kochin representation of waves
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The purpose of this study is to present a verification of the Fourier-Kochin representation of waves
given in [1,2]. This representation expresses the waves generated by a given flow at a boundary
surface in terms of single Fourier integrals and spectrum functions that are defined by distributions
of elementary waves over the boundary surface. The Fourier-Kochin representation of waves is given
in [1,2] for three classes of free-surface flows: (i) diffraction-radiation of time-harmonic waves without
forward speed, (ii) steady ship waves, and (iii) time-harmonic ship waves (diffraction-radiation with
forward speed).

The Fourier-Kochin representation of waves is considered here for steady flows associated with
the linearized free-surface boundary condition w + F2 ou/Ox = 0 where F = ?1/xv/ is the Froude
number, and (u,v ,w) = U = U/U = Vq$ is the disturbance-flow velocity; here, 0 = 1/(UL) is the
velocity potential associated with the velocity 17. The Fourier-Kochin representation of waves defines
the potential OW and the velocity 67w associated with the waves that are generated by a given velocity
distribution 67 at a boundary surface E, which may intersect the mean free-surface plane z = 0 along
the boundary curve F. The boundary surface E U F is divided into patches, i.e. E U F = Epl 'N P U Fp,

associated with reference points (xp, yp, zp) , with i = X/L, located near the centroids of the patches.

The wave potential Ow and velocity 97W at a field point (6,77, () of the flow domain outside a
boundary surface E U F are given by the single Fourier integrals

O[ 00 id p=l=W f df3 ad [1 er(d SWe (zp + kd+ i[ (_P _)d +(yP _,)/o
47{V llek -00 {cdJP=1 oF 2C 'P

where Re stands for the real part. The functions ad(/3) and kd(C) are defined as

ad = v'k/F kd = 1 + V -2 +-32 with v = 1/(2F 2 )

Here, kd(!3) stands for the value of the wavenumber k at the dispersion curves a = ±ad(1 3), with
-Do < 0 < oc, associated with the dispersion relation F 2 a 2 - k = 0. The function C in the error
function erf is related to the curvature of the dispersion curves and is given by

C = 1+ 13/(F 2kd) - 21/(4F 2kd_ 3) 3/2

We have C=2 for ,3=0, where ad = kd= 1IF2, C-41 as 0--+±oo, and C=-1 at the inflexion points
defined by F 2 kd = 3/2 and F 2/3 = ±/V32. The positive real constant a may be chosen as in [2].

The contribution SW of patch p to the wave-spectrum function SW(t3) is given by

SWW= SE+F 2 S' with

P dA [,U -ii ad (gXi)y_ j q]e

IE±i (17x 0i (17 [C)X ek (z-zP)+iOa(xxr)+1yv

Here, the unit vector •i = (n',nY,nz) is normal to the boundary surface F and points into the flow
region outside F, and the unit vectors t = (tx, ty, 0) and i = (-ty, t', 0) are tangent and normal to
the boundary curve F in the mean free-surface plane z = 0. The normal vector i points into the flow
region outside F, like the normal vector f, and the tangent vector T is oriented clockwise (looking
down). The spectrum functions SE(3) and S"(,3) are defined by distributions of elementary waves
over the boundary surface F and the boundary curve F, respectively, with amplitudes given by the
normal components 6u. ii, 17. i7 and the tangential components u7 x ii, 17. itof the velocity 17 at E and F.
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Thus, the Fourier-Kochin wave representation defines the wave potential cW(ý) and velocity ilw(ý)

at a field point " of the flow region outside a boundary surface E U F in terms of the velocity distri-
bution il7() at the boundary surface E and the boundary curve F. This representation of the waves
generated by a flow at a boundary surface only involves the boundary velocity i7(Y); i.e. the Fourier-
Kochin wave representation does not involve the potential ¢(Y) at the boundary surface E U F, unlike
the classical boundary-integral representation that defines the potential in a potential-flow region in
terms of boundary-values of the potential ¢ and its normal derivative Oq'/On = i!. 1i. The Fourier-

Kochin wave representation is based on several recent new fundamental results obtained within the
framework of the Fourier-Kochin theory [3,2] : (i) the boundary-integral representation, called velocity
representation, given in [1,2], (ii) the representation of the generic super Green function defined in
[4,5,2], and (iii) the transformations of spectrum functions given in [3,1,2]. The flow generated by a
given flow at a boundary surface can be expressed as

¢ = OW+ eL a= ;w +,a

where OW, 17 W is the wave component defined by the Fourier-Kochin wave representation, and 0L,

jjL is a local-flow component. The Rankine and Fourier-Kochin nearfield flow representation given in

[6] expresses the local component qL, i7L in terms of distributions of elementary Rankine singularities

and Fourier-Kochin distributions of elementary waves over the boundary surface E and the boundary
curve F. The local component eL, i7 L is not considered here.

For the purpose of verifying the foregoing Fourier-Kochin wave representation, the flow due to a
source-sink pair is considered here. Fig.1 shows the disturbance velocity (u, v , w) generated by a point
source and a point sink, of strength q = Q/( UL2 ) = 0.001, located at (x, y, z) = (±0.5,0, -0.02)
over the lower half z < 0 of the ellipsoid x2/a 2 + y2/b 2 + z 2/c 2 with (a,b,c) = (0.55,0.05,0.1).
The velocity distribution (u , v , w) generated by the point source-sink pair is evaluated, for a Froude
number F = 0.316, using integral representations of the Green function given in [7]. The upper
half of Fig.2 depicts the free-surface elevation, computed using integral representations of the Green
function, due to the source-sink pair. The lower half of Fig.2 depicts the free-surface elevation obtained
using the Fourier-Kochin wave representation and the velocity distribution generated by the source-
sink pair at the ellipsoidal boundary surface depicted in Fig.1. The free-surface elevations computed
using expressions for the Green function (upper half) and reconstructed using the Fourier-Kochin
wave representation (lower half) are not identical in the vicinity of the ellipsoidal boundary surface

because the local-flow component uL is ignored in the Fourier-Kochin wave representation. The wave
elevations shown in Fig.3 along the four longitudinal cuts y = 0, y = 0.06, y = 0.1, y = 0.5 show that
the local component uL in fact is only significant in the vicinity of the elliptical boundary curve.

The results depicted in Figs 1-3 provide a verification of the Fourier-Kochin representation of waves.
Furthermore, Fig.3 shows that the wave component is dominant even in the nearfield. Illustrative
practical applications of the Fourier-Kochin representation of waves are given in [8,9]. Specifically,
the Fourier-Kochin representation of steady ship waves is coupled with nearfield calculations based on
the Euler equations in [8] and is applied to the design of a wave cancellation multihull ship in [9].
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Fig. 1. Velocity distribution generated by souce-sink pair at boundary surface

Green Function F=0.316

Fourier-Kochin

Fig. 2. Wave patterns due to souce-sink pair
top: wave pattern computed using Green function

bottom: wave pattern reconstructed using Fourier-Kochin wave representation
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Unsteady Wash Generated by a High Speed Vessel

Hironori YASUKAWA, Nagasaki Experimental Tank, Mitsubishi Heavy Industries*

Introduction

The unsteady wash generated by a high speed vessel with decelerated motion in a channel is
numerically investigated. This situation may be similar to that the vessel reduces the speed in the
channel. Then, the Kelvin waves generated by the vessel progress straight and propagate in the
channel. We carried out computations of the wash using a time domain panel method including
the attitude change of the vessel. Several studies with respect to the time domain method have
been carried out, for instance, by Maskew (1991), Beck et al.(1993), Li and Chwang(1997) and
Yasukawa(1999, 2000). However, there is no analysis of the unsteady wash including the effect
of the attitude change so far as we know. The time domain method and the computed results
for the unsteady wash will be introduced.

Basic Equations

Let us consider the shallow channel of the water depth h. The vessel is assumed to move in
center of the channel with the speed U(t) which varies as the function of time t. The coordinate
system fixed in the space is employed. The x-axis is defined as direction from the ship stern to
the bow, y-axis to port and z-axis vertically upward. The x - y plane is the still water surface.

The perturbation velocity potential due to the vessel moving in the channel is defined as
O(x. y, z, t). Then, 0 has to fulfill the following boundary conditions as:

0¢ 02¢ 1 {(__)I + (,,)•2 0€2
- g -g ( + on z = 0 (1)at ataz 2 aOx/ Oy) 19z)

at - Oz + &24 aX a y ay onz=0 (2)
Dz x Ox OyyOy

ao=(U(t) CoOS-0 sin 0+ 6zH) n., (U(t) sin 0+ 3 CoOS- OXH nz on SH (3)an

ao o-=0 onSw, -=0 onz=-h (4)

The 2nd order non-linear free surface conditions expanded with respect to (, which means the
wave height, around z = 0 are employed, eqs.(1) and (2). Eq.(3) is hull surface condition, and
has to be satisfied on actual wetted surface SH. In eq.(3), 6 and 0 denote dynamic sinkage and
trim respectively, XH and zu the coordinate of hull surface, and nx and nz the component of
outward normal vector. Eq. (4) is the boundary conditions on the channel wall Sw and the sea
bottom z = -h.

Velocity potential 0 is represented using source strength U as follows:

0(p) = JJSH±SF+SW a(Q)G(P; Q)dS (5)

where
1G (P; Q)=

V(x - x1)' + (y - yi) 2 + (z - z1)2

1 (6)
_\V/( -XI)l + (y - yl)2 + (Z + Z, + h)2

"*5-717-1 Fukahori-Machi, Nagasaki 851-0392, JAPAN, email: yasukawa@ngsrdc.mhi.co.jp
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Here, P - (x, y, z) is a field point and Q = (xi, yi, z1 ) the source point. SF denotes the still
water surface (z = 0). The 2nd term of the right hand side of eq.(6) is the additional term to
fulfill the bottom surface condition.

Numerical Scheme

Numerical scheme to solve the boundary value problem is as follows:

1. Accelerations of dynamic sinkage and trim G4 'c+1 Qk+1) and time derivatives of wave height
and velocity potential on free-surface (k+1, +1 ) respectively at (k + 1)-th time step are
assumed using values at k-th step. Here suffix t represents time derivation.

2. According to Newmark's 03 method, the velocities and displacements of the sinkage and
trim at (k + 1)-th step are estimated as (herein, only *3k1 and 1 are written.):

k+ k+ At + (Atl)/2

(3 3'+ / (7)

2k+l =3k + At 3k + (/t)2 k +(At)
2("k+l "(3 3 3 _ 3 •-• /t)(3 __ 3k (8)

where At is time increment, and 3 the acceleration factor.

3. Based on the given ship speed and the sinkage and trim estimated in Step 2, ship hull and
free-surface panels are arranged.

4. According to Newmark's 3 method, wave height and velocity potential on free-surface at
(k + 1)-th step are estimated as:

ck+1 = At -- + At (Ck +(k+1) /2, 0k+1 =ok +At (ok +ok+l) /2

5. Influence functions are calculated with respect to free-surface, ship hull and channel wall
surfaces to make a matrix for determining all source strengths. Basic equations for the
sources are discretized using constant panels.

6. Solving the base matrix by SOR method, source strengths on free-surface, hull and tank
wall surfaces are obtained.

7. ok ' and k+ ' are calculated using eqs.(1) and (2). Then, velocity components on free-
surface are analytically calculated. The derivatives of ( with respect to x and y are
obtained numerically using finite different technique.

8. Hydrodynamic forces acting on hull are calculated by Bernoulli's equation. Obtaining the
hydrodynamic forces, '3 and 0 are calculated from the motion equations of the ship.

9. The ý3, 0, 0 and Ot obtained in step 7 and 8 are compared with those assumed in step
1. When the difference between both is sufficiently small, & 0, ( t and Ot are regarded as
reaching to the convergence. Otherwise, returning to step 2, calculations are continued
using &3, 0, (t and kt obtained in step 7 and 8 until obtaining converged solution through
this iteration.

10. k is set one time step ahead and return to step 1.
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Computed Results

Computations of the wash are carried out for a high speed vessel with L/B=-7.50, B/d=4.58 and
Cb=0. 4 5 , where L, B, d and Cb are ship length, breadth, draft and block coefficient respectively.
L is assumed to be 1.0m in the computations. This vessel has a transom stern. In actual
computations, we put round stern panels to the stern end to avoid the unexpected higher stern
waves. The additional panels are dealt with as inexistent panels for calculation of the forces
acting on the hull.

Fig.1 shows the propagation of the waves generated by the vessel in the channel from -2.35
to 4.35 for non-dimensional time T. T = 0 is corresponding to the stop time of the vessel after
the deceleration. The assumed speed change is shown in Fig.2. Froude number based on the
constant speed U0 before the deceleration and the ship length Fn is 0.519. As the region of the
channel, 24.5L for the length, 2.2L for the half breadth and 2.2L for water depth are assumed
in this case. Then, Fronde number based on the water depth Fh becomes 0.350. The breadth
and the depth are the same size as the towing tank of Nagasaki R & D center, MHI. In the
computation, 4,000 panels for free surface, 480 panels for the vessel and 2,400 panels for the
channel walls are used. Time interval 0.02s is in the computation.

Typical Kelvin wave pattern is observed at T=-2.35. At T=0.35, we can see that shifting
of the waves generated by the vessel strats just after the vessel stopped. Further, the waves
reflected by the channel walls are remarkably observed at the rear region of the vessel. At
T=2.35 and 4.35, the bow-shape waves observed in front of the vessel propagate up stream.
Thus, propagation process of the unsteady wash generated by the high speed vessel in the
channel is realistically demonstrated.

To obtain the verification data, the model test was carried out in the towing tank. Fig.2
shows the comparison of time histories of the ship motions (sinkage and trim) and wave heights
at 3 positions fixed at the tank. The positions are (x/L,y/L)= (1.79, 0.5), (1.79, 0.643) and
(1.79, 0.786) where x is longitudinal distance between fore peak of the stationary vessel and the
wave height sensor and y the lateral distance from the tank center line. Behavior of the motions
which occur due to the passage of the waves, arrival time of the wash and the wave period in
the computation agree well those in the experiment.

In the workshop, we will present further results computed in shallow waters.
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Fig.2: Change of ship speed and comparison of time histories of the motions (sinkage and trim)
and wave heights at 3 positions fixed at the tank
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Computation of Waves Generated by a Ship Using an NS Solver

Based on B-Spline Solid

Chengbi Zhao and Zaojian Zou
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ABSTRACT: A method has been discussed for obtaining the free surface turbulent flow solutions

around an advancing ship, in which the pseudo-compressibility is used. The geometry grid

systems are generated by the B-spline solid. The velocity and pressure are also represented by B-
spline solid. The wave surface is shown for Wigley hull at Froude number F,. = 0.348 and

Reynolds number Re = 3.21x10 6 in the paper.

1. INTRODUCTION
Some methods have been developed for wavemaking and seakeeping problem based on B-spline

and NURBS surface[2][3][4][8][9][13], and some good results have been obtained. It is worth to
noted that many efforts have been made in the simulation of the flow around a ship with free

surface by resolving the NS equations[l][5][7][11][12]. The finite volume method and pseudo-

compressibility method are adopted for solving NS equation, and the k e , one equation and BL

turbulence model are used respectively in their works. The above numerical methods are based on

the difference formulation.

The objective of this work is to develop a discreting method based a B-spline solid. The pseudo-

compressibility and BL turbulence model are adopted for present work, and the free surface
turbulence flows around a Wigley hull is computed

2. FORMULATION

The governing equations with pseudo-compressibility form in the non-dimensional form can be

written as
all - av w -a

-+Vo0 =0 -+VOjy =0 W+V6& =0+ (1)
at at at at

where

u1 + p - 2vux uv -(ý+ u') Fu WUV(U: IL n it
uw-v(u,+wO) VW-V(v +wY) w2 + p-2 Jvwz W+

r= p(u 2 +v 2 +w 2 ) v=I/R,+v,

The parameter /3 is a positive constant , and /3 = 0.25. Fr is the Froude number. Re is the

Reynolds number. v, is the eddy viscosity.

The governing equations are integrated in the control volume moving with time, and the Reynolds

transport theorem and the Gauss integral theorem are adopted. The governing equation in each
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control volume become the following formulations

d_ JdV+ (ý-uii = d f" dV+d " d=o

dt v(t) Js(t) di v() (t) "

t wdS = 0 dt)pdV (p - p,) * ridS = 0 (2)
dtv(t) s) 7t 4)+

where ý is velocity vectorand fi= (u,v, w)T. h = (n_,nY,)is a unit outward normal of the

control volume.The geometry shape can be represented by B-spline solid. The expression

formulation is
L0 MG NG

N(M Ii ,) = iXXX -jkNj',(4)Njm(nl)Nk,ý,) (3)
i=O j=o k=O

where ý is the locate vector, and i=(x,y,z)T. j= =(Xk, ykzi )T are the B-spline control

nets representing the geometry shape. Ni ,Nj,,andNk,n are the B-spline basis function of

order 1,m and n, defined by the Cox-de Boor recursive expressions.

The velocity and pressure can also be expressed by B-spline solid in follow formulation.

Ls MS Ns

(•,,j4) = E E ikNi,p(4)Nj,q (tl)Nk,,() (4)
i=0 j=O k=O

LS Ms Ns

P(,,= E 11 PijkAip(ý)Nj'q(rl)Nk'(, (5)
i=0 j=O k=O

where iUk = (Ujk, ijkj ,)T and P1 jk are the B-spline control nets representing the velocity and

pressure. The integral equation(2) transformed to the parameter coordinate system can be written

as

-t Jv(,) uddqdd + I -+s2 uF,) - il Hdird4 + Ls3+s4 (Ox - uO) * ý2H2d~dý + s5+s6 ('x - uF) - ti3H 3 did = 0 (6)

dt Jv(t) v~d~drd + .s8+s2 (¢i' - v+) *lHidrid¢ + 1s3+s4(•v - v) 2H 2d~d• + L5+s6 (v - v)Y *3H3d d = 0 (7)

d+ 2 - wPO) * iilHidiidd + d3 +4 (z - wif) * i2H2 d ýd• + Op5+6(z - wP) * • 3H 3 d 7di= 0 (8)

dt v(t) pJdgdindý +Jsl+s24P -pý) 51Hldlldý + fs3+s4( -Pi).h2H-dfd s +I 5+s6( -Pzi).n 3H3 d~d77 = 0 (9)

where

J=- __= X - -XX 2
;i3 i x x , Hi E .2,i=1,2,3

E1 = q -eij G, =i F 1=ij = x

The similar formulation can be obtained for E2 ,F 2 ,G 2 and E3 ,F 3 ,G3 . iý , can be calculated

by following formulation
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ý E 1- : 2 j, AlXk j,,,,(),() (10)
i=0 j=0 k=0 d

Ls Ms Ns -

i=0 j=0 k=0

The similar formulation can be obtained for i, ,i and u,, can be represented in

following

-zj =z7tx ;U-zýi zx - ]' 1 (12)5z -_rz'x~r x~•xy ~•xýyJf

The formulation (6) is calculated by adopting the iteration formulaton(13).
L, Ms Iv- I

10J~ko I'o I "(13)

- At( 1 ,2( - ui7). aHjdqdý + 13s0,- u07 -*H4 + J 5 ,6(ý, -0 ui^) i 3 Hdrd

The similar formulation can be obtained for formulation(7),(8),(9). The integrations items in the

above formulation are calculated by applying Gaussian quadrature. The linear equation systems

can be constructed by satisfmg the integral equation in each control volume and the boundary

conditions, thus Ouk = (U•jk, Vjyk' Wijkk)T and P,, can be obtained by solving the linear equation

systems. The velocity i and pressure p can be obtained by appling the De Boor algorithm. The

stress condition is adopted for the free surface boundary condition. It can be see in ref.[7]. The

other boundary conditions are listed in Table 1.

Table 1 Boundary Condition

Boundary u, 1, w p

Upstream u = 1, v = 0, w = 0 p=O

Downstream a"/%=O,'aV/ =O'aw/,• 0 aO % =0

Center /i =o,v=0,a-•-0 ap/v =0

Free Surface Stresses Stresses
Body u = 0' ' = 0 ,p/

Bottom u = 0,v = 0,w = 0 {p/ 0

Side aul/ % = 0,a% = 0,oa ==0 % 0

The new grid systems can be reconstructed by the following formulation approximately, and

n+1=k = +At.-, (14)

the new velocity and pressure are smoothed by B-spline solid for next time calculation. It

will take wave filter effect. The goal is for the numerical stability.

3. RESULT OF WIGLEY HULL
The Wigley hull is selected for turbulent flow computation. The Froude number and Reynolds

number are Fr = 0.3 4 8,Re = 3.21x10 6 . The grid system is shown in Fig.1. The wave surface is shown
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in Fig.2. The range of grid system is -1.5_ x •1,0< y •1.5,-1.5< z < wave height.

4LLI
L4tý

VX

Fig. 1.Grid System Fig.2. Wave Surface

4. CONCLUSION

Although this is a initial and incomplete work, it is feasible that the turbulence flow is calculated

by adopting B-spline solid. The detail work need to do in the following several monthes.
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Fluid Motions in a Tank with Internal Structure

Renchuan Zhu and Kimio Saito
Div. ofDevelopment Science, Hiroshima University, JAPAN

1. INTRODUCTION

The linear and nonlinear fluid motions has been widely studied by using Boundary Element
Method (BEM)(Brebbia (1978)), which has a merit of reducing the dimensions by one and it is
applicable even for the infinite domain problem. When BEM is used for the calculations of the
velocity potential and the hydrodynamic forces, it is important to get a precise value in the
boundary integral of the functions of l1r, in which r is the distance between elements. It is difficult
to get the analytical solution for the three-dimensional (3D) problem and the numerical method
such as Gaussian integration will be applied to the integral of the function l/r, in which the
singular integration on the boundary should be paid attention. In a tank with the internal
structure, the distance r between elements on both sides of the internal structure will tend to 0,
when the thickness of the plate t tends to 0. So it is very difficult to avoid the numerical error in
the integral of the function 11r. It has shown the errors between the analytical solution and the
numerical integral in the paper of Nishino et al. (1999).

In this paper, the sloshing in 3D tank with the internal structure and the vibration of the
internal structure in 3D tank are discussed by extending the basic BEM to the multiple domain
problems. The fluid motions in a tank with the internal structure that is subjected to the forced
oscillations and the dynamic pressure distributions on the thin vibrating internal structure are
shown. Some of the computed results are compared with the ones in the published paper. It
indicates that they agree well each other and the present method is effective.

2. MULTIPLE DOMAIN "BEM"

As shown in Fig.1, we assume that the whole
domain composes of the two connected domains,
I and II with the imaginary boundary Fi. When
the outside boundaries of the domain I and II Domain I Domain

are expressed by Fi and 1-2 respectively, the
domain I is surrounded by F1 and Fi, and the
domain II by '2 and Fi. Fig. 1 Multiple domain system

We assume the fluid is incompressible and the flow irrotational so that there exists a velocity
potential 0 that satisfies the Laplace equation, in the whole fluid domain, and the velocity

potential is defined as V= =• (4 is the fluid velocity).

On the outside boundaries there are two kinds of conditions. One is expressed by the value of the
velocity potential on the part of the outside boundary, i.e. t=known. Another is the value of the
normal differentiation of the velocity potential on the remaining outside boundary, d3/Odn-known.

On the imaginary boundary, the flow velocity and its potential at any point is the same as the
one in the adjacent domain, so that we obtain the following conditions on the imaginary boundary,

01 = , 0 on (1)n an '

According to the Green's formula, the velocity potential 0 can be written as,
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COP = cf.Žin! ds-1c 1 In +~n~dS (2)

where r is the distance between the source and field point, cp and op is the radian measure and the
velocity potential at the node Pon the boundaries, Sis the whole boundaries in the domain.

By using the expression of vector and matrix, it can be written as:

[H]( = [G] in domain 1, 11 (3)

where matrices [H] and [G] consist of constants determined by Green's function and the mesh
system of the boundary discretization method, vectors {1} and {fd/dn} are the values at the nodes
on the boundaries.

By using the domain name for the superscript and the variables on the boundary for the
subscript, the following matrix equation will be obtained,

H' H~ ' - G' 0 1JGo' 0]~(4)

where the subscript "I' means the variable of the nodes on the imaginary boundary Ti, and "o"
denotes the variable of the nodes on the outside boundaries FJ and F2 and

<P= P! ,Dia/anJIf 1 V= ýb/anj0 ,ai~/anL'}.

It is obvious that the velocity potential can be obtained by solving Eq. (4).

3. SLOSHING IN 3D TANK WITH INTERNAL STRUCTURE

We consider a 3D tank that is subjected to forced oscillations and assume that the fluid in a tank
is inviscid and incompressible and the flow is irrotational in the whole domain.

K~~~~ ~.. ...... ......... ..."
----- . ---- <- --------

A maginarv Bounda v! rFree urfacel

Forced swav~

"- X Domaip I

uItrnl ctlre

Fig.2 3D sloshing model and fluid domains Fig.3 Triangle mesh system

As shown in Fig.2, for simplicity, we assume the tank is only a forced sway in y direction. The
governing equation satisfies the 3D Lapalace equation. On the free surface, the dynamic and
kinematic boundary conditions can be described by Eqs. (5) and (6),

LOt + ya+y+gz+/o (5)

at 2 {C D2 2a}ayy 5

n _- a (6)

ny t an

where/y is the viscosity coefficient. On the rigid boundaries in the whole domain are all zero. The
time-stepping technique and the center finite difference schemes with respect to time are used to
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obtain the velocity potential at the node on the nonlinear free surface:

= + 4o 2At, ~j-t IA + dg. 2At (7)

where dl/dt= do/dt+ Vp1/2 and dc/dt is substituted by d/dt. From Eq. (7), the free surface profile
and its cooresponding velocity potential at every time step will be obtained.

In order to verify the numerical method and the program of this study, the numerical
calculations for the sloshing problem have been carried out and the results are compared with the
one of Shinkai et al. (1987) which was computed by MAC (Mark and Cell) method. We used the
same tank as Shinkai's having the breadth and length: a=40cm, the water depth of 14cm fitting
with the 4cm internal structure on the centerline of the bottom. The tank is subjected to the forced
sway oscillations in which the period is 1.0 second and the amplitude is 1.0cm. For the start of the
computation, it is assumed that the tank is set to be horizontal and the water is at rest. The
computed free surface elevations are shown in Fig. 4 and Fig. 5. The former gives the free surface
profile in the tank at time t=2.40 second and the latter illustrates the time histories of the free
surface elevation at the tank side on the centerline (x=a/2). In Fig. 5 the solid line denotes the
result of present method, symbol is Shinkai's which is compared by using two dimensional method
(Shinkaiet aL (1987)). The periodic line is close to the symbols and it indicates the present method
is effective.

10
ý' t - :'Present method

-6k
F Time(second)-

Fig. 4 Free surface profile in the tank Fig. 5 Comparison of the free surface elevations
at t=2.40 at the tank side on the centerline (x=a/2)

4. VIBRATION OF INTERNAL STRUCTURE IN 3D TANK

We consider a 3D tank with an internal structure that is subjected to a periodical forced
oscillation with an infinitely high frequency. It is assumed that the fluid is incompressible and the
flow irrotational so that there exists a velocity potential ¢ that satisfies the Laplace equation. Since
the frequency -

-=0 on the free surface. (8)
ILocation of inner structure(

0.30 40IF_- r s
sen Present

0.25 3 , method
CAnalytical') PE

solution 2-0 ydreom
0.2 2 40 60 8TPBEM4  

a
V BEM4  

1-7, 7v'1
0.15 __ __ __ ____ _

P 1 10 --

0.05o
V 30

0.0 'o t)Pres ur (a-0 ___dretion (in)

0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0

(a) Pressure gap distribution on thin plate (b) Pressure distribution on bottom

Fig. 6 Pressure distribution due to a unit acceleration of the internal structure
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On the tank wall and internal structure, dl/dn-V, and on the tank bottom dol/dn-O (n is the
normal to the boundaries).From the Bernoulli's equation, the pressure can be expressed as,

P = - t1 (p: fluid density) (9)

By the integration of Eq. (9) on the rigid boundaries, the hydrodynamic forces acting on the
boundaries can be obtained.

For the numerical calculations, we choose the case of Nishino et al. (1999), in which the
dimensions of the tank and the internal structure are as shown in Fig. 2. Both the breadth and
length of the tank: a=1.0m and the fluid depth is 0.50m. The internal structure locates at y=0.40m
and it has a height of 0.30m. Here we also used the method of the triangle element mesh system to
discretize two domains of the tank, which is similar to section 3. It is assumed that the internal
structure oscillates in the fluid with unit acceleration in its normal direction. Fig. 6 shows the
pressure distributions on the centerline (x=aI2) due to unit acceleration computed by using the
triangle element with linear shape function. It also gives the pressure gap distribution on the thin
internal structure and the pressure on the bottom of the tank. In the figure, the analytical solution,
the results of the basic BEM and TPBEM (Thin Plate BEM by Nishino et al. (1999)) are shown by
the symbols of circle and triangle respectively. The result of the present method is very close to the
analytical solution and the one of TPBEM.

5. DISCUSSIONS

Nonlinear simulations have been carried out for the fluid motions in a tank with internal
structure that is subjected to the forced sway oscillation. In order to avoid the numerical error
which will be appeared in the integral on the internal structure, the basic BEM has been extended
to the multiple domain problems. The computer program has been developed and applied to the
simulation of the sloshing phenomena. Some of the computational results are compared with the
ones in the published paper and it indicates that they agree well each other and the present
method is effective.

The multiple domain BEM has been also applied to the vibration of the internal structure in
contact with the water. From the comparison of the solutions among the basic BEM, TPBEM and
the analytical ones, the present method agrees well with TPBEM and analytical solutions. It is
also expected that the present method is a useful tool for the evaluation of the added mass in the
fluid-structure interactive vibration.
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